
1 Introduction

A series of Notes about the e¤ect of the Neutral Beam Injection.

The NBI ions are very energetic and they transfer their energy and their
momentum to the target plasma. The energy transfer leads to higher tem-
perature of both electron and ion components of the background plasma.
And the transfer of momentum leads to plasma motion (toroidal rotation)
and to an electric current since the transfers to electrons and to ions and the
collisional e¤ects are di¤erent.
An important problem is the loss of trapped NBI ions from the plasma

since their orbit is so large that can be greater than the plasma radius. This
is a radial current and must be compensated by a return current �owing
through the bulk plasma producing a torque and therefore rotation, both
poloidal and toroidal.

The e¤ect of the NBI ions is studied using their kinetic distribution func-
tion.
This is solution to a Fokker Planck equation. The particularity is the ne-

cessity to use the complete form of the collision operator in order to represent
the multitude of the processes determined by the NBI.
First the fast NBI ions are slowed down by collisions with electrons of the

background plasma.
When the velocity of the NBI ions has been reduced to a particular critical

threshold vc the role of ions of the background plasma becomes important
with two e¤ects on the NBI ions: (1) slowing down by collisional transfer
of energy to the background ions, and (2) pitch angle scattering of the NBI
ions, which means particular evolution of the kinetic distribution in velocity
space at the boundary between trapped and circulating new NBI ions.

The electric current determined by the NBI is due to the momentum
transfer to the background ions, which sustains a current in the direction
of the injection. If the transfer of momentum from the fast NBI ions to
the background electrons would be equal then there would be an equal �ow
of electrons in the direction of the injection and therefore no new electric
current. Actually both background ions and background electrons that have
received momentum in the direction of injection undergo collisional friction
with all plasma and this is di¤erent for the two species. Electrons collide with
background ions and with impurity ions and lose the momentum obtained
from the fast NBI ions at a rate that is di¤erent of the similar loss (friction)
rate of the ions. In addition the trapped electrons have an e¤ect on the �ow
of electrons. Then the �ow (current) of electrons in the direction of injection
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is di¤erent of that of ions and the relative magnitude is not unique in the
space of parameters. If the electron �ow (in the direction of injection) is less
a¤ected by collisions then they will move faster than the ions (since these are
more a¤ected by friction) and the total current is negative. In the opposite
case the ion �ow is predominant and the current is positive. The resulting
current must be combined with the main electric current in the plasma in
the absence of NBI.

The problem is similar with that of alpha particles, which are fast ions
too. There are however di¤erences between the case of NBI ions and of
the alpha particles. The �rst have an anisotropic distribution of velocity
(they are produced by a beam) while the alphas have isotropic distribution
of velocity at birth since they are created by nuclear reaction in the volume.

1.1 List of increasingly complex approaches

Ohkawa 1970
Basic idea of current drive by NBI.

Cordey Houghton 1973. The FP equation has no drift convective
term, only @=@t and collisions. The Rosenbluth potentials are used in the
collision operator. With their explicit form the collision operator reduces to
: (1) slowing down, and (2) pitch angle scattering. The solution is written
as a series of terms with separation of variable factors, of v and �.

Connor Cordey 1974 equilibria. This time the drift convection of
the zeroth distribution function is included. Variables are w = v2=2 and
� = v2?= (2B). Expansion in the ratio of bounce to collision !bounce=�collision
(slowing down) times � bounce=� slowing�down � 1 (very fast bounce and rare
collisions). The zeroth order f0 of the fast ions does NOT depend on �.
Then

� write the equation for the next order f1, the neoclassical correction of
the distribution of the fast ions

� use the periodicity on �, which introduces the averages on surface

The averages of quantities like


vk=B

�
and



1=vk

�
are approximated.

Later they will be better calculated.

Then, to �nd the solution, separation of variables, in w and � �
q
1� �B0

w

(B0 �the minimum value of the magnetic �eld, at the outermost point on
the equatorial plane; typical to Cordey).
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The current generated by NBI is calculated.

Cordey Core 1974 Fokker Planck. The Rosenbluth potentials h and g.
The variables are

�
v; � � vk

v

�
. Later the variables are

�
u � v

v0
; � =

vk
v

�
for

separation of variables by series of products. The derivative of the distribu-
tion function at the birth velocity, v = v0, or u = 1 has discontinuity given
by the angular spreading of the beam new ions.

Cox Start NBI + ICRH

Fowler code
details of the collision operator are in Ga¤ey

Cordey Jones Start Curtis Jones 1979, kinetic theory NB Current
Drive
Equations for the collisional e¤ects on the electrons.

Ce;beam (FMe; fbeam) + Ce;i (f
0
e ; FMi)

+Ce;e (f
0
e ; FMe) + Ce;e (FMe ; f

0
e)

= 0

The unknown is f 0e, since we want to calculate the current (carried by elec-
trons after interaction with fast ions). It is expressed by sum over terms with
separated variables.

je = �e
Z
d3v vk f

0
e

The total current is "beam+electrons", where "beam" means fast ions

j = K1 enbeam vbeam

�4
3

e vth;e np
�

I3 (1)

and can be positive or negative.
The factor

F =
j

K1 enbeamvbeam

= 1� 16

3
p
�

I3 (1)
v�bB

where
v�b =

vb
ve
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can become negative.

F = 1� 1

Z
� v�b
Z

for small v�b

The net current is in the opposited direction relative to the beam for

Z = 1

v�b � 1:3

Start Cordey Jones e¤ect of trapped electrons on beam-driven current
1980
The objective is the distribution function of the electrons, after interaction

with the fast ions, from wich the electron current is calculated.
[Later there will be Lin Liu Hinton for NBCD]. There is neoclassical

drift (vD) convection of fbeam (or fast).
Collision operator is already separated into slowing-down and the pitch

angle.
Collisions are

� fast ions with electrons (the NB-induced electron current)

� electrons with electrons (friction)

� electrons with background ions (loss of the moment gain from NB, by
friction with cold ions)

� fast ions with background ions

If the electrons bene�t of the full momentum transfer from the fast ions,
then their motion accompanies the motion of the fast ions and these two
currents almost cancel each other.
One current, of the fast ions, and of the background ions that have re-

ceived momentum from the fast ions, is in the direction of the injection.
The electron �ow is in the same direction, as they have received mo-

mentum through collisions with fast ions. Then their current is opposite
(reversed) and tends to cancel the current of the fast+background ions.

There is trapping for the electrons.
The trapping inhibits the reversed current of the electrons:
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� reduce the number of current carrying particles

� introduce a new friction force, collisions between circulating electrons
and trapped ones

There is expansion in

� bounce
� slowing�down

� 1

(very fast bounce)

The zeroth order does not depend on �. For the �rst order one uses periodicity
which becomes a constraint for the zeroth order, an equation to be solved. It
is calculated



vk=v

�
and



v=vk

�
. Very useful �gures of these averages, showing

the singularity at �=
p
2" = 1, where � =

q
1� �B0

�
. The discontinuity of the

derivative to � of the function f at the boundary �t. Solution obtained with
separation of variables, (v; �) after f0 is represented as a series of terms-
product of factors.
See below.

Hsu Catto Sigmar alphas
Hsu Shaing Gromley Sigmar alpha bootstrap

1.2 Notes

The loss of counter-injected NBI hot ions is used by Yushmanov Horton
in electrostatic potential formation at the edge due to hot ions lost
to LIMITER.
This is in ITB, Notes.tex .

The loss of hot ions from NBI due to large orbits is in ion_loss.

The collisions are essential.
See fokker_planck_quasilinear_karney1986. Review.
It is detailed in my notes in collisions.tex .
See for collisions Ga¤ey, in the notes collisions.tex .

From the paper parallel velocity shear instabilities Catto Rosen-
bluth Liu PF 16 (1973) 1719.
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There is a critical velocity:

vc � vth;e

�
me

mi

�1=3
For NBI ion velocities higher than vc the beam ions are slowed down by

collision with background electrons.
For velocities smaller than vc the collisions with background ions and

electrons consists of both slowing down and of pitch angle scattering.

2 Fokker Plank equation Cordey Houghton
1973

This part is also in collisions.tex.

The Fokker Plank eq. is written for the hot (fast) ions of the NBI.

� in uniform magnetic �eld (no toroidality, no trapped particles). Local
in space, the process is the velocity space

� axisymmetry in velocity space, isotropy around the direction v parallel
with B;

� use of the Rosenbluth potentials, g and h;

� the background ions and electrons are cold Maxwellians

The eq. of collisional balance is written for the FAST IONS generated by
the neutral beam

1
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The Rosenbluth potentials

h =
4p
�

X
j=e;i

nj

�
mhot +mj

mjv3j

�

�
"Z v

0

dv0 v02
1

v
exp

 
� v02

v2th;j

!
+

Z 1

v

dv0 v0 exp

 
� v02

v2th;j

!#

g =
4p
�

X
j=i;e

nj
v3th;j

�
v

Z v

0

dv0 exp

 
� v02

v2th;j

!
v02
�
1 +

v02

3v2

�

+

Z 1

v

dv0 exp

 
� v02

v2th;j

!
v03
�
1 +

v2

3v02

�#
with the coe¢ cient

Chot = 4�
Z2hote

4

m2
hot

log �

Range of velocities
vth;i � vhot � vth;e

This will simplify the expressions

� s
@f

@t
=

1

v2
@

@v

��
v3c + v3

�
f
�

+
1

2

mi

mhot

v3c
v3

@

@�

��
1� �2

� @f
@�

�
+eS (v � v0) � � (� � �0) � s

where

vc =

�
3
p
�

4

me

mi

�1=3
vth;e

= the value of the hot ion velocity

at which the rate of transfer of energy

from the hot ions to the background electrons

equals the rate of transfer of energy

from the hot ions to the background ions

NOTE in Connor Cordey 1974 it is used the critical energy,

wc =

�
3
p
�

4
Zi

�2=3�
mi

me

�1=3
mhot

mi

Te
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End

and
v0 = peak of the injection velocity

� s =
mi

mhot

v3c n Chot

The source is constant and all particles are injected at only one angle
with the magnetic �eld which is

arccos �0 = arccos

�
vk0
v0

�

NOTE
the absence of the space-dependent part (convective derivative) in the FP

equation.
This is because the NBI are directed along an initial, particular, direction

relative to the magnetic �eld, they are NOT isotropic.
By contrast, for the fast alpha particles, the FP must contain a term�

vkbn+ vD� �rf�
and this leads to the �rst neoclassical correction (Hsu Shaing Gromley
Sigmar)

f� = �I
vk

c

@f�0
@ 

+ P (�;w;  )

For the � particles the initial distribution is isotropic.
This is the di¤erence:

� the NBI ions are NOT isotropic, are directed; then there is no neoclas-
sical correction

� the � particles are isotropic; then there is a neoclassical correction.

END

NOTE
that in Fowler code the term of slowing down (the �rst, not the pitch an-

gle scattering) is explicitely separated into two contributions, from electrons
and from ions.
The equation in Fowler is (see below)

f � f fast�ions
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and the variable x is NOT space, it is the variable in the velocity space

� s
@f

@t
= � � s

� cx
f charge exchange

+
1

x2
@

@x

��
x3 � 2Bx+ x3c +

C

x2

�
f

�
drag

+
1

x2
@2

@x2

��
Bx2 +

C

x

�
f

�
di¤usion in velocity

+
D

x3

�
1� D1

x2
+D2x

�
1

sin �

@

@�

�
sin �

@f

@�

�
angular scattering

+� s
X
l

�
nflSl (x; �) source of injected ions

without electric �eld E� and without compression
�
R of the plasma column.

Here

x =
v

v0
v0 = the speed of the NBI ions

xe =
vth;e
v0

; xi =
vth;i
v0

xc = critical velocity =
vc
v0

The terms that we discuss are the "drag" and the "di¤usion in velocity".
The coe¢ cients in these terms are

B =
1

2

me

mfast

x2e

C =
1

2

mi

mfast

x2ix
3
c

and this shows the separation between electrons and ions.

Remark that inCordey Houghton (and later in other works, likeRosen-
bluth Hinton 1996) the di¤usion of f in the velocity space

@2f

@x2
or

@2f

@v2

is ABSENT. Then the distribution function is exactly zero for velocities
higher than the initial, injection, one: v0,

f � H (vb � v)

H � Heaviside

Also, in Ga¤ey the solutions obtained for:
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� (1) stationary, no source;

� (2) stationary, with source;

� (3) with time variation (Laplace transform);

� (4) with electric �eld;

- are all without di¤usion in velocity.
END of the NOTE

The solution of the equation for f .
The form of the pitch angle scattering operator suggests to use Legendre

polynomials.
It suggests also to use separation of variables v and �.

It is adopted the series expansion

f =
1X
n=0

An (v) Pn (�)

Pn (�) � Legendre polynomials

Approximation adopted byCordey Houghton for the range of velocities

v > vc

Here is the domain where the NBI ions are slowed down collisionally by the
electrons. Then the term of pitch angle scattering can be neglected. There
is mainly slowing down.
The remaining equation is solved for the following adopted form of the

source term

eS (v � v0) = S
exp

h
� (v�v0)2

�2

i
v2�
p
�

S � number of particles injected per second

per unit volume

We note that the source is smeared out with extension in velocity space
around the central NBI-ions velocity v0 of width �. A Gaussian shape.

De�ne

v� (v; t) =

��
v3 + v3c

�
exp

�
3t

� s

�
� v3c

�1=3
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The solution is

f = � s
1

v3 + v3c
� (� � �0)

Z v�

v

dv0 v02 eS (v0 � v0)

= � s
1

v3 + v3c
� (� � �0) S

�1
2

�
erf c

�
v � v0
�

�
� erf c

�
v� � v0
�

��
where

erf c (x) = 1� erf (x)
= complimentary error function

The last expression is written

f � r (v) � (� � �0)

(the distribution function remains strictly localized on the pitch angle �0 of
initial condition).

For large time

t ! 1
v� ! 1

the second erf function is zero and for

v � v0
�

� 1

(� � half width of the source)

(the spreading in velocity v is large)

Then
f = � s

1

v3 + v3c
� (� � �0) S

This is a solution obtained after the approximations have reduced the
problem to one dimension.

Exact solution by series: little angular spreading for

v > vc
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This means that the scattering and slowing down of the hot ions on electrons
does not produce spreading in

� =
vk
v

This is because the ions are heavy and when they collide with electrons (since
v > vc) there is little pitch angle scattering and more transfer of energy, i.e.
slowing down.
The spreading begins when the hot ions slow down and pitch-angle-scatter

on background ions, equally heavy.

The paper also discusses the formation of an electric �eld due to the
separation of charges after ionization.

Summary
The Rosenbluth potentials g and h.
The derivation of a simple form of the equation FP, with clear separation

in slowing down and pitch angle scattering.
Approximation in the high NBI-ions-velocity limit, compared with critical

vc, ! neglect of pitch angle. Eq. becomes one-dimensional, it is integrated
giving ERFC functions. They can be approximated in certain regimes and
give a function

f � S

v3 + v3c

The solution based on the usual expansion and separation of vaiables f =X
an (v)Pn (�) con�rms the result in the regime where the approximations

have been made.

3 NBI e¤ects on toroidal equilibria Connor
Cordey 1974

The equation for NBI hot ions with anisotropic source
It is cited Ohkawa 1970 NF, the origin of the idea to produce current

by NBI.
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Remark the parallel convection which turns out to only be poloidal con-
vection since f � f (�)

@fh
@t

� B�

B
vk
@fh
r@�

=
1

� s

�
2p
w

@

@w

��
w3=2c + w3=2

�
fh
�

+2�
w
3=2
c + w3=2

w3=2
@fh
@�

+
mi

mh

�wc
w

�3=2
vk
1

B

@

@�

�
�vk

@fh
@�

��
+S

where

w =
v2

2

� =
v2?
2B

vk =
p
2 (w � �B)

� s =
3

4
p
2�

mhp
mi

1

e4Z2h

1

ln�

T
3=2
e

n

The critical energy

wc =

�
3
p
�

4
Zi

�2=3�
mi

mh

�1=3
mh

mi

Te

The ratio

B�

B
� �(r)

independent of �

Expansion in small parameter

�hot�ionbounce

� s
=
time of bounce of hot ion
time of slowing down

� 1

fast bouncing compared with rare collisions.
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Particular choice of expression for parameters

B0 = minimum of the magnetic �eld

on a surface

is the magnetic �eld at the farthest point on the equatorial plane, in plasma.

B = B0
1� " cos �

1� "

In the expansion that will provide the solution.
The lowest order for fh0 is independent on �.

@fh0
@�

= 0

or
fh = fh (�;w; r)

Procedure:
one writes the next order in �hot�ionbounce =� s and imposes the constraint of

periodicity (which means the eq. is multiplied by B then averaged over the
magnetic surface): this gives zero. The constraint becomes an equation for
the zeroth order fh0.

� s
@fh0
@t

=
2p
w

@

@w

��
w3=2c + w3=2

�
fh0
�

+
1

4

mi

mh

�wc
w

�3=2 B0

�w
D
1
vk

E @

@�

"
(1� �2)


vk
B

�
�

@fh0
@�

#
+� sS

where

� =

r
1� �B0

w
=

r
1� v2?

v2
Bmin
B

Since at � = 0 the magnetic �eld is

B (� = 0) = B0
1� "

1� "
= B0 = Bmin

we see that they de�ne � to be measured from the equatorial plane and we
have

B0
B

=
Bmin

Bmin
1�" cos �
1�"

=
1� "

1� " cos �
= (1� ")

�
1 + " cos � + "2 cos2 � + :::

�
= 1� "+ " cos � � "2 cos � + "2 cos2 � � "3 cos2 � + :::
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which means
Bmin
B

= h� "+O
�
"2
�

and

� =

r
1� v2?

v2
(h� ")

then � does not use �, the conventional variable in velocity space

�conventional =
v2?
v2
h

Note that

h� " = 1 + " cos � � "

=
B0
B

(in Cordey trapped)

=
1� "

1� " cos �
� (1� ") (1 + " cos �) = 1� "+ " cos � OK

Then

Dvk
B

E
=

8>><>>:
I

d�
B

p
2 (w � �B) for passing hot ionsR B

A
d�
B

p
2 (w � �B) for

trapped ions
A;B are turning points

The calculation of an analytic expression for the averages

vk
B

�
and

D
1
vk

E
can be done near

� � 0
where

v2 = v2? (h� ")

= v2? [1 + " (cos � � 1)]

If we assume that " is small this is close to deep trapped.Dvk
B

E
� �

2Bmin

r
w

"
�2

�
1

vk

�
� �p

w"
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The opposite limit is

� ! 1

hot ions are passing

Solution in the case of all hot ions deep trapped

� � 1

Better expressions are in Cordey trapped.

The operator that includes two �-derivations becomes operator for Bessel
functions.

fh0 =
1X
n=0

an (w) J0 (jn�)

J0 is Bessel function and jn are zeros of dJ0dx .
Explanation
The di¤erential equation for the eigenfunction �n (�) is written inCordey
End

The equation

2p
w

d

dw

��
w3=2c + w3=2

�
an
�

�1
4

mi

mh

�wc
w

�3=2
j2n an

=

R 1
0
S J0 (jn�) �d�R 1
0
J20 (jn�) �d�

The solution is obtained analytically.

an =
1

2

w
3
2
�

c�
w
3=2
c + w3=2

�1+�
�
Z 1

w

dw w
1
2
� 3
2
�
�
w3=2 + w3=2c

�� R 10 S J0 (jn�) �d�R 1
0
�J20 (jn�) �d�

� =
1

12

mi

mh

j2n

The idea of Ohkawa is considered: to use two neutral beams
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- one is high energetic, intended to introduce energy in the target plasma;
but it also introduces momentum
- the other beam is opposite, and is low energy but is high current.
This combination will mainatin balance of momentum, not total displace-

ment of the plasma.

The momentum that is obtained by the background ions is the momentum
lost by the hot ions

miniui +mhotnhotuhot = 0

The current is also calculated.
The current carried by the ions

ji = eZhot nhotuhot � eZi niui

= eZhotnhotuhot

�
1� mhotZi

miZhot

�
For the current carried by the electrons, one has to solve the kinetic

equation

vk
B�

B

@f
(1)
e

r@�
� me

e
vk

@

r@�

�vk
B

� @

@r
FMe

= Cei
�
f (1)e

�
+ Cee

�
f (1)e

�
+ Ce;hot [FMe]

where

Cei
�
f (1)e

�
= Lorentz operator

corrected for moving ion

Cee
�
f (1)e

�
= operator pitch-angle

plus compensating momentum-conservation

(Kovrizhnykh)

Ce;hot [FMe] = collision operator between electrons

and hot ions

To calculate Ce;hot one must replace the hot distribution function

fhot;0

in the Rosenbluth potentials.
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Use

� =

r
1� v2?

v2
(h� ")

and in domains
� � 1

fhot;0 =

1X
n=0

an (w) J0 (jn�)

where jn � zeros of
dJ0
dx

= 0

w � v2

2

and
� � 1

fhot;0 =
1X
n=0

an (w) Pn (�)

After replacing in the Rosenbluth potentials, and

w > wc

Ce;hot [fe] = �
2� Z2hote

4

m2
e

ln � uhot cos �
nhot
w

@fe
@w

where

� � angle between injection line

and magnetic line

= f0 or �g

It is obtained, total current

j = e nhot uhotZhot

�
�
1� Zhot

Zi
+ 1:46

p
"

�
Zhot
Zi

� Zi
Zhot

mhot

mi

�
A (Zi)

�
where A is a complicated expression, � 1,..., 1:6

A (Zi) = 1 +
2:12

3
p
�Zi

R1
0

h exp(�x) x3=2
h+Zi

dxR1
0

h exp(�x)
h+Zi

dx
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where

h (x) =

�
1� 1

2x

�
� (x) +

d� (x)

dx

� (x) =
2p
�

Z x

0

exp (�t)
p
t dt

Return for comment of

j = e nhot uhotZhot

�
�
1� Zhot

Zi
+ 1:46

p
"

�
Zhot
Zi

� Zi
Zhot

mhot

mi

�
A (Zi)

�
The �rst two terms are from Ohkawa. This is zero if

Zhot = Zi

There is a contribution from trapped electrons. It vanishes if

Z2hot
Z2i

=
mhot

mi

Comments regarding the e¤ect of the beam on the
- particle pinch, and
- particle di¤usion

The beam has the same e¤ect as a toroidal electric �eld.
Then one can expect an e¤ect similar to the Ware pinch.

The plasma di¤usion caused by the beam is

� = 1:46

p
" me

eB�

nhot uhot �

�
1 +

0:53

Zi

��
1� mhot

mi

Z2i
Z2hot

�

� =
4

3

p
2� Z2hote

4

p
me

ln �
ne

T
3=2
e

It is taken

Zi = 1

Zhot = Z
mhot

mi

= Z
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It is evaluated A (1) and results

j = e nhot uhot Z (1� Z)
�
1� 2:54

p
"
�

and the particle �ux caused by the beam

� = 2:24
p
"
me

eB�

nhot uhot �

�
1� 1

Z

�
which may be comparable with the di¤usion �ux due to the gradient of
density.

intersting part: the decay of toroidal rotation due to the ripple.

4 Fokker Planck equation for NBI ions Cordey
Core

The next level.
(it is also in collisions.tex)
The equation
only velocity space and charge-exchange
but electric �eld.

The equation is for the hot (fast) ions resulted from Neutral Beam

@f

@t
+
ZhoteE

�

mhot

 �
1� �2

�
v

@f

@�
+ �

@f

@v

!

= C

�
1

2v2
@

@v2

�
v2
@2g

@v2
f

�
� 1

v2
@

@v

�
f

�
v2
@h

@v
+
@g

@v

��
� 1

2v3
@g

@v

@

@�

�
1� �2

� @f
@�

�
� 1

� cx
f

+S� (v � v0)K (�)

where
g; h � Rosenbluth potentials

C =
4�e4Z2hot
m2
hot

log �
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The modi�ed electric �eld

E� = E

�
1� 1

Z

�
� =

vk
v

Z =
X niZ

2
i

ne

NOTE
again the absence of the convective derivative, which is justi�ed by the

anisotropy of the beam, in contrast with the case of � particles.
Therefore no drift hence no neoclassical term.
END

Explanation regarding the term with the electric �eld.
There are two parts.
One is the acceleration of the new hot ions by the electric �eld.
The other is the drag exerced against the new ions by the electrons in

their motion in the electric �eld. Electrons move in opposite direction than
the (fast) ions and exert a friction.
To obtain the drag

h = h0 + h1 (v) � � E

g = g0 + g1 (v) � � E

The two functions are determined through the method for Spitzer Harm.

The spread of the source in � � vk=v is represented by K (�).

The Rosenbluth potentials.
Are simpli�ed by assuming

vi � vhot � ve

The theory is extended in the energy of the hot ions subjected to slowing
down, up to

1:5� vth;i

(probably in Fowler to 2� vth;i).

v2
@h

@v
+
@g

@v
= � 4

3
p
�

mhot

me

v3
ne
v3th;e

� n = mhot

X
j(ions)

njZ
2
j

mj
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@g

@v
=
X

njZ
2
j = neZeff

v2
@2g

@v2
=

4

3
p
�
v2

ne
vth;e

+
1

v

X
j(ions)

njZ
2
j v
2
th;j

An approximation based on neutralityX
j(ions)

njZ
2
j

mj

� ne
miX

j(ions)

njZ
2
j v
2
th;j = nev

2
th;i

and Z1 = 1 (basic ions are hydrogen). Notation

u � v

v0
v0 � velocity at birth

Then (remember everything is velocity space)

�a
@2f

@u2
(di¤usion)

+b
@f

@u
(drag)

+d f

+�ar L (f)� �

u

�
1� �2

� @f
@�

= �� sS � (u� 1)K (�)

where

a (u) = 1 +
2�

u3

b (u) =
u3c
u3
+ u� �� � 4� �

u3
+ 4�

1

u

d (u) = 3� � s
� cx

+
4��

u5
+
2�

u2

r (u) =
miZeff
2mhot

u3c
u3
1

�a

u3c =
v3c
v30
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vc =

�
3
p
�

4

me

mi

�1=3
vth;e

� =
ZhoteE

�

mhotv0
� s

L � @

@�

�
1� �2

� @
@�

� =
1

2

mev
2
th;e

mhotv20
=
1

2

Te
�0

� = 0:66
vth;e v

2
th;i

v30

� s =
3

16
p
�

memhot

e4Z2h ln �

v3th;e
ne

The expression contains

@2f

@u2
;
@f

@u
; f ; source

They correspond to

� di¤usion in velocity space @2f
@u2

� drag (slowing down) @f
@u

The solution is obtained with the expansion and separation of variables.

Much more details in collisions.tex.

5 Fokker Planck equation for NBI ions + ICRH
Cox Start

Also in collisions.
The generation of current by ICRH. The increase of the energy of the

minority (heated) ions leads to reduction of the collisionality of these ions
with the electrons. The background ions preserve the collisionality, so there
will be a di¤erence - a �ux - resulting for the two ion types.
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Corrected scenario: start with NBI but with di¤erent ions, like He3 or
heavy ions. Then ICRH.

The Fokker Planck

@f

@t
=

�
@f

@t

�
wave

+

�
@f

@t

�
C

+ Sf (v; �)

The collisions between the hot ions and a Maxwellian plasma.
The magnetic �eld is uniform.

5.1 Collisions

Coulomb collision operator for

vth;i � vhot � vth;e

Assumptions:

� there is no di¤usion @2f
@u2

in velocity space caused by electron collisions.

� the magnetic �eld is zero

� in the collision operator it remains the slowing down of fast ions on
both background electrons and ions + pitch angle scattering (it is as if
the ions were under the critical velocity vc)

Then �
@f

@t

�
C

=
1

� s

�
b (u)

@f

@u
+ d (u) f + r (u) Lf

�
where

u � v

v0
v0 � injection velocity

b (u) =
u3c
u2
+ u

u3c =
v3c
v30

=
3
p
�

4

me

mi

Z
v3th;e
v30
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d = 3� � s
� cx

� s =
1

4

3

4
p
�
memh

1

Z2he
2

1

ln�

v3th;e
ne

r (u) = �
u3c
u3

� =
1

2

mi

mh

Zeff

Z

Zeff =
X
i

niZ
2
i

ne

Z =
X
i

mh

mi

niZ
2
i

ne

L � @

@�

�
1� �2

� @
@�

� �
vk
v

REMARK
No di¤usion, since no second order derivation in the operator.

5.2 Wave

Now there is di¤usion in velocity space, due to the wave.
The e¤ect of the wave is a di¤usion in the space of the velocity�

@f

@t

�
W

= Dc
1

v?

@

@v?

�
v?

@f

@v?

�
� (! � 
c)

After change of variables �
vk; v?

�
! (u; �)�

u =
v

v0

�
�
@f

@t

�
w

=



� s

1

u

�
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1� �2

�
u
@2f

@u2
+
�
1 + �2

� @f
@u
� 2�

�
1� �2

� @2f

@u@�

+
�

u

@

@�

�
1� �2

�
�
@f

@�
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 =
Dc

v20
� s

5.3 In the absence of the wave

Without the wave,
no di¤usion in u, but possibly in �

b (u)
@F

@u
+ dF

+�
u3c
u3

@

@�

�
1� �2

� @F
@�

+� sS
K (�)

2�K0v30
� (u� 1)

= 0

The solution, separation of variables, u and �

F (u; �) =
1X
n=0

a0n (u) Pn (�)

The equation becomes a system

b
da0n
du

+ da0n � �
u3c
u3
n (n+ 1) a0n

+
(2n+ 1) � sS Kn

4�v30K0

� (u� 1)

= 0

where
K (�) = angular distribution of the beam

Kn =

Z 1

�1
d� K (�)Pn (�)

The integration of the eq. gives a0n as

a0n (u) =

�
C+An (u) for u > 1
C�An (u) for u < 1

where

An (u) = un(n+1)�
�
1 + u3c
u3 + u3c

� d+n(n+1)�
3
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and
C+ and C� are constants

It results that the velocity of injection v0 is an important limit.
The equation for a0n is integrated from just below 1

� to just above 1+ this
limit.

a0n
�
1�
�
� a0n

�
1+
�
=

(2n+ 1) � s Kn

4� v30 (1 + u
3
c) K0

The asymptotic condition on f is a constraint that should determine the
constants C�.
The condition is

fu3 ! 0 for u!1
(see Cordey Houghton).
Then

C+ = 0

The �nal form of the functions a is

a0n (u) =

(
(2n+1) �s Kn S

4�v30(1+u
3
c) K0

An (u) for u < 1

0 for u > 1

The function F is zero above the velocity of injection, v0.
This is because there is NO di¤usion of velocity.
Collisions just decrease the energy of the fast ions.

6 Cordey Jones Start Curtis Jones 1979, ki-
netic theory NBCD

See Connor Cordey 1974.
Equations for the collisional e¤ects on the electrons.

Ce;beam (FMe; fbeam) + Ce;i (f
0
e ; FMi)

+Ce;e (f
0
e ; FMe) + Ce;e (FMe ; f

0
e)

= 0

The unknown is f 0e. It is expressed by sum over terms with separated vari-
ables.

je = �e
Z
d3v vk f

0
e
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The total current is "beam+electrons"

j = K1 enbeam vbeam

�4
3

e vth;e np
�

I3 (1)

and can be positive or negative.
The factor

F =
j

K1 enbeamvbeam

= 1� 16

3
p
�

I3 (1)
v�bB

where
v�b =

vb
ve

can become negative.

F = 1� 1

Z
� v�b
Z

for small v�b

The net current is in the opposited direction relative to the beam for

Z = 1

v�b � 1:3

7 Start Cordey Jones trapped electrons 1980

"The e¤ect of trapped electrons on beam driven currents in toroidal
plasmas"

This paper is very useful because it separates the distribution function
of the electrons in parts that do not depend on � so they do not contain
the trapped particles and parts that are dependent on trapped particles and
depend on magnetic mirror � �.

There is neoclassical drift (vD) convection of fbeam (or fast).
Collision operator is already separated into slowing-down and the pitch

angle.
Collisions are
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� fast ions with electrons

� electrons with electrons

� electrons with background ions

� further, fast ions with background ions

There is trapping for the electrons.
The trapping inhibits the reversed current of the electrons:

� reduce the number of current carrying particles

� introduce a new friction force, collisions between circulating electrons
and trapped ones

Another e¤ect of trapping:

� due to the injection of momentum from the fast ions, the thermal ions
begin to rotate, in the same direction

� this should be an electric current too

� normally (with full mobility of electrons, no trapping) the electrons
follow the moving ions (collisionally) and so there is NO electric current

� but now, we have trapped electrons. Then some electrons cannot follow
the rotating ions and so there is umbalanced �ow ions/electrons and
then an electric current

There is expansion in

� bounce
� slowing�down

� 1

(very fast bounce)

The zeroth order does not depend on �. For the �rst order one uses periodicity
which becomes a constraint for the zeroth order, an equation to be solved. It
is calculated



vk=v

�
and



v=vk

�
. Very useful �gures of these averages, showing

the singularity at �=
p
2" = 1, where � =

q
1� �B0

�
. The discontinuity of the

derivative to � of the function f at the boundary �t. Solution obtained with
separation of variables, (v; �) after f0 is represented as a series of terms-
product of factors.
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The distribution function for ELECTRONS
It is expanded

fe = FMe + f (1)e

The Fokker Planck equation

Ce�fast [fMe; ffast]

+Ce�i
�
f (1)e ; FMi

�
+Ce�e

�
f (1)e ; FMe

�
+ Ce�e

�
FMe; f

(1)
e

�
= vk

B�

BT

@f
(1)
e

r@�

C � linearized operator
where

ffast =
X
n

an;fastPn (�)

� �
vk
v

where

an;fast =

�
n+

1

2

�
nfast

1

2�v2b
Kn� (v � vb)

the coe¢ cientKn is obtained by projecting on the set of Legendre plynomials
(Pn (�)) the function Kn (�).

Kn =

Z +1

�1
d� Kn (�)Pn (�)

To solve the equation.
Expansion in p

"

The distribution function is composed

f (1)e = f (1)(0)e

�
solution of FP without trapped electrons

equiv. without � variation

�
+h(0) (localized part of the dist. function)

+f � (non-localized part of dist. function)
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The �rst part f (1)(0)e is the solution of the FP equation without the neo-
classical convective term (RHS), which introduces the � variation through
the dependence vD (�):

Ce�fast [fMe; ffast]

+Ce�i
�
f (1)(0)e ; FMi

�
+Ce�e

�
f (1)(0)e ; FMe

�
+ Ce�e

�
FMe; f

(1)(0)
e

�
= 0

which means that the trapped electrons (equiv. the magnetic mirror e¤ect)
are neglected. This results in the absence of the variation with � of

f (1)(0)e 6� �

@f
(1)(0)
e

@�
= 0

since the variation with � comes from the trapped particles.

The part h(0) is the localized part of the distribution function. It depneds
on �.

The part f � is the non-localized part, to the order
p
".

The expansion in series of products of Legendre polynomials of � and
coe¢ cients an must be adapted to the three components of the distribution
function

f (1)(0)e = FMe

X
n

f (1)(0)n Pn (�)

h(0) = FMe

X
n

h(0)n (v; �) P1 (�)

f � = FMe

X
n

f �n (v; �) P1 (�)

The electron current depends on the following coe¢ cients from these ex-
pansions

f
(1)(0)
1

h
(0)
1

f �1
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We note that in the expansions for the components h(0) and f � the Legen-
dre functions P1 (�) will provide the dependence on �.
But, in addition, their coe¢ cients

h
(0)
1 (v; �)

f �1 (v; �)

also have some � dependence.
To deal with this � dependence, one has to take the surface averaging.
The surface averaging will only be acted upon these coe¢ cients, not the

Legendre functions. D
h
(0)
1

E
=

Z 2�

0

d�

2�
h1 (v; �)

hf �1 i =
Z 2�

0

d�

2�
f �1 (v; �)

It exists the connection

Ce [f
�] (def.)

� Cee [FMe; f
�] + Cee [f

�; FMe]

+Cei [f
�; FMi]

= �
�
Ce � C(0)pitch�anglee

� �
h(0)
�

The pitch angle scattering part of the operator is separated from Ce
�
h(0)
�
.

This is

C(0)pitch�anglee

= Cei
�
FMi; h

(0)
�

+Cee
�
FMe; h

(0)
�

This has been calculated

C(0)pitch�anglee

�
h(0)
�

= FMe ne �e
1

4v3the

1

x5

�
�
x
dE (x)

dx
+
�
2x2 � 1

�
E (x) + 2Zeff x

2

�
� @

@�
�
�
1� �2

� @
@�
h(0)

x � v

vthe
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�e =
4�e4

m2
e

ln �

E (x) = erf (x)

Zeff =

X
niZ

2
i

ne

We have from previous calculations (Hazeltine Rosenbluth) the solu-
tion to the equation

Ce [f
�] = �

�
Ce � C(0)pitch�anglee

� �
h(0)
�

= Cee [FMe; f
�] + Cee [f

�; FMe] + Cei [f
�; FMi]

and here we replace the Legendre expansions of

f (1)(0)e = FMe

X
n

f (1)(0)n Pn (�)

h(0) = FMe

X
n

h(0)n (v; �) P1 (�)

f � = FMe

X
n

f �n (v; �) P1 (�)

One obtains a set of uncoupled equation for the coe¢ cients

d2a1
dx2

+ U (x)
da1 (x)

dx
+ V (x)

� 16

3
p
�

1

� (x)

�
xI3 (x)� 1:2x I5 (x)� x4

�
1� 1:2x2

�
(I0 (x)� I01)

�
= R (x)

Here
a1 = hf �1 i+

D
h
(0)
1

E
U (x) = �1

x
� 2x+ 2x2 1

� (x)

dE (x)

dx

V (x) =
1

x2
� 2 1

� (x)

�
Zeff + E � 2x2dE (x)

dx

�
� (x) � E (x)� x

dE (x)

dx
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R (x) �
D
h
(0)
1

E 1

� (x)

1

x2

�
x
dE (x)

dx
+
�
2x2 � 1

�
E (x) + 2Zeff x

2

�
and

In (x) =

Z x

0

dy yn exp
�
�y2

�
a1

We note that the integrand in the expression of In (x) contains the coef-
�cient a1.
This depends on h(0) which is the localized part of the distribution func-

tion.
Therefore we must calculate the function h(0), the localized part.
This function obeys the equation

@h(0)

@�
=

24 1
p
1��B
B

� H(�c � �)
1Dp
1��B
B

E
35FMe f

(1)(0)
1 (x)

where

� � v2?
v2
1

B

H(�c � �) = 0 for trapped

Orders

h(0) �
p
"

p
1� �B

@h(0)

@�
� O (1) for trapped

� O (") for circulating

The result D
h
(0)
1

E
= �1:46

p
" f

(1)(0)
1

The formula

3

4
hBi

Z 1=Bmax

0

�d�R 2�
0

d�
2�

p
1��B
B

� 1� 1:46
p
"
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8 Fokker Planck for NBI: Fowler code FIFPC

This part has been copied in the �le Notes.tex of project ITB from Models.
The paper is Fowler CPC 13 (1978) 323.
See also the Notes.tex on the numerical implementation.
The equations

� s
@f

@t
= � � s

� cx
f charge exchange

+
1

x2
@

@x

��
x3 � 2Bx+ x3c +

C

x2

�
f

�
drag

+
1

x2
@2

@x2

��
Bx2 +

C

x

�
f

�
di¤usion in velocity

+
D

x3

�
1� D1

x2
+D2x

�
1

sin �

@

@�

�
sin �

@f

@�

�
angular scattering

+E

�
� cos �@f

@x
+
sin �

x

@f

@�

�
electric �eld

�� s
�
R (t)

R (t)
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�
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2
sin2 �

�
x
@f

@x
+
1

2
sin � cos �

@f

@�

�
�eld compression

+� s
X
l

�
nflSl (x; �) source of injected ions

where the constants are (adimensional)

x =
v

v0
v0 = the speed of the NBI ions

xe =
ve
v0

; xi =
vi
v0

xc = critical velocity =
vc
v0

B =
1

2

me

mfast

x2e

C =
1

2

mi

mfast

x2ix
3
c
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x3c
hZi
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[Z]

hZiB
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4
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xe hZi
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mfastv0
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mi
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Slowing down time

� s = 120�
�
Te � 10�3

�2=3 � �mfast
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�
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(ne=1013)� ZF 2

(milliseconds)

Maximum fast ion lifetime

� fast = � s �
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and vc is the velocity that corresponds to the energy

Ec = const� Te

�
mfast

mH

�1=3�
mfast

mi

�2=3
[Z]2=3
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Part I

Comments
9 Current induced by NBI

9.1 Introduction

The beam transfers momentum to both ions and electrons.
The ions are moved in the direction of the beam and this is a current.
The electrons are also moved in the direction of the beam and this is

an anti-current, which must be subtracted from the current induced by the
beam.
The problem of determination of the current induced by NBI consists of

�nding the electron distribution function (di¤erent of a Maxwellian due to
collisions) and then calculate as usual the electron current.
The total current is a the sum

j = jejnbvb � jelec

where

jelec = �
Z
d3v jej vkf 0e

with
fe = FMe + f 0e

The current produced by the new ions is directed along the injection NBI.
The electron �ow velec has the same direction, since it results from

� collisions with the NBI ions, Ceb (FMe; fb) which imprints a motion in
the direction of vb;

� collisions with the thermal ions Cei (f 0e; FMi), a friction force

� collisions with the electrons Cee (f 0e; FMe) + Cee (FMe; f
0
e), which have

both e¤ects: transfer momentum to the electrons, which is a friction,
and also induce supplementary �ow

If the beam would produce by transfer the same velocity of ions and of
electrons then the total current would be zero.
However the electron �ow (which is opposite current) is smaller.
It is substracted from the ion�s current and so the total current is smaller

than the beam current.
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The total current is therefore always smaller than the beam current and
the quantity that is used is

F =
jtotal

jb
< 1

Now one can understand the very important role of the impurities, es-
pecially the high-Z impurities: when there are high-Z impurities, the ions
produced by NBI (hot-ions) have a higher friction on the electrons while the
ion current continues. Then

F � 1� 1

Z

When Z � 1 the total current is close to the beam current.
The arrival of the Tungsten ions in the center means an increase of the

beam-induced electric current.

9.2 Kinetic theory of beam-induced current

(Cordey Jones Start Curtis Jones)
The NBI ions are generated with directed momentum, the geometry is

ANISOTROPIC.
The equation does not need space variation of the electron distribution

function (neoclassical correction to the Maxwellian ��
@f0
@r
) since there are no

trapped particles, the current is sustained by circulating electrons.
One basic component of the current produced by NBI is the current of

the fast ions.
The other component is due to the electrons that get an ordered �ow

after colliding with the fast ions.
This �ow has the same direction as the �ow (the current) of the fast ions.
Therefore the current of electrons is negative and it will be subtracted

from that of the ions.

The theory of Ohkawa, �uid: electrons have a Maxwellian distribution,
shifted. The displacement of the Maxwellian is due to the momentum gain
of the electrons from Coulomb collisions with the fast ions. This �ow of
electrons is then saturated by the loss of momentum to the background ions.
[we recognize the picture for the bootstrap current, also by Cordey].
Compared with experiment: in experiment the current is reduced when

the electron temperature grows.
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And, at high electron temperature, the direction of the current produced
by NBI is opposite to the current of fast ions.
The assumption that there is a displaced Maxwellian is not correct.
"the velocity dependence of the
frictional force between the fast ions and the electrons
is, in general, di¤erent from that between the thermal
ions and the electrons. This leads to the electron distribution
being distorted in such a manner that the
distribution cannot be represented by a displaced
Maxwellian."
and
"This distortion of the electron distribution
from Maxwellian is similar to that caused by an electric
�eld, which was discussed by Spitzer [3,4] and coworkers
in their fundamental papers on the calculation
of the resistivity of a plasma"
[Codey Jones Start... NF19 (1979) 249.]

Conclusion: the distribution function of the electrons after collision with
fast ions is NOT shifted Maxwellian but it is of the same type as the Spitzer
distribution, i.e. in the presence of an Electric �eld and collisions.

Assumptions

number of fast NBI ions

is much smaller

than the bulk ion density

nb � n

(However see Assunta)
and

usually velect � vfast�ions � vth;i

Then
felec � fe = FMe + f 0e

The current of the electrons, under all these e¤ects [drive by nfast of NBI,
friction to bulk ions, drive by bulk electron (whose thermal velocity is much
higher than vfast) and friction with bulk electrons], is

je = �e
Z
d3v f 0e (v) vk

39



We NOTE that, when the current, in some situations (like high elec-
tron temperature), reverses its direction and the current becomes oriented
opposed to the fast ions current, - then this should be due to the electrons,
and precisely to the perturbed distribution function f 0e. This means that in
some situations the electrons �ow faster than the fast ions, and in the same
direction with them, and this means a minus current along the direction of
NBI, or, an opposed current. Reversed current.

9.2.1 Kinetic distribution of fast ions

The fast ions distribution ffast is obtained separately, from a Fokker Planck
equation for NBI.
See Cordey NBI (born anisotropically).
See Hsu Catto Sigmar, transport for � (born isotropically).
It is assumed to be known.
Formal expression, separation of variables v and �

ffast =
X

afastn (v) Pn (�)

where
� =

vk
v

The situation

slowing down time of the fast ions

= 10�
charge exchange time

Then the fast ions approx. remain with the energy they came in the
plasma and are monoenergetic.

afastn (v) =

�
n+

1

2

�
Kn nfast

1

2�v2fast
� (v � vfast)

where

Kn =

Z +1

�1
K (�)Pn (�) d�

K (�) � angular distribution of fast ions
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The toroidal current of the fast ions is the velocity-space integration of
the vk = v�, with f � distribution function for fast-ions.

jfast�ions = Zfast�ions e

ZZ
2�v2dv (v�) f (v; �)

= S� sK1

Z
dv

v3

v3 + v3c

�
v30 + v3c
v3 + v3c

v3

v3c

� 2
3
�

where

� =

r
3

2

p
�

In the Legendre expansion of f only the component with P1 (�) survives
because � = P1 (�).

NOTE
Regarding the possible variation of the NBI ions distribution with the

poloidal angle �, re�ecting the shape of the banana (see LH, notes) here we
cannot see any trace, since everything is solved in velocity space.
END

9.2.2 Kinetic distribution of electrons

The Fokker Planck equation for ELECTRONS is reduced to

Ceb (FMe; ffast) bulk electrons - beam ions

+Cei (f
0
e; FMi) pert. elect. - bulk ions

+Cee (f
0
e; FMe) pert. elect. - bulk electrons

+Cee (FMe; f
0
e) bulk elect. - pert. electrons

= 0

The collision operator C is linearized.

The perturbed distribution function of the electrons, which always ac-
company the NBI ions, is symmetric relative to the �eld line. Then it can
be expanded in Pn (�) as well

f 0e (v) = FMe

X
n

an (v) Pn (�)
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Similarly, the Rosenbluth potentials that occur in the collision operators
are expanded in the set of polynomials, with separation of variables (v; �)

h =
X
n

hn (v) Pn (�)

g = ::

Using these expansions in the Fokker Planck equation one obtains a sys-
tem of equations for an (v) , whose solution determined the perturbed electron
distribution function, f 0e.
It is necessary FOR THE ELECTRIC CURRENT carried by the elec-

trons, only a1 (v).
The Fokker Planck equation becomes

a001 + P (x) a01 +Q (x) a1

=
16

3
p
�

1

W

�
�
xI3 (x)� 1:2x I5 (x)� x4

�
1� 1:2x2

�
(I0 (x)� I0 (1))

�
+R (x) this is the drive of the electron current

where
x =

v

vth;e

P (x) = �1
x
� 2x+ 2x2�

0

W

Q (x) = � 1
x2
� 2Zeff + �� 2x

3�0

W

Zeff =

X
Z2i ni

ne

W = �� x�0

�0 � d�

dx

� (x) = erf (x) =
2p
�

Z x

0

dt exp
�
�t2
�

In (x) =

Z x

0

dt a1 (t) exp
�
�t2
�
tn

v�fast � normalized fast ion velocity

=
vfast
vth;e
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The drive of the electron current is the Coulomb collision with the fast
ions.

R (x) = � B

W
�

8>>><>>>:
� 1

(v�fast)
2

�
6
5
x6 � 2x4

�
for

x < v�fast
or v

vth;e
<

vfast
vth;eh

v�fast +
6
5

�
v�fast

�3i
x for

x > v�fast
or v

vth;e
>

vfast
vth;e

with a constant
B � 4K1

nfast
n

the total current: fast ions plus the electron current

j = eK1

�
nfastvfast �

4

3

vth;ep
�K1

nI3 (1)
�

The parameter de�ned as the ratio between the current (fast ions plus
electrons) divided to the fast ion current

F =
j

nfast e vfast K1

= 1� 16

3
p
�v�fast

I3 (1)
B

From the results shown by Cordey et al we see that when Z = 1 the
ratio F can become negative.
When Z = 2 or Z = 4 the ratio F remains positive (no reversal of current)

but there is a decrease of F in a certain range of the variable (vth;e=vfast)
�2.

The presence of higher Z (impurities) means that it is maintained the
direction of the current sustained by NBI fast ions: the electrons have much
more e¢ cient friction and they are not able to move in the direction imposed
by the fast NBI ions (ion current) at a similar �ux. Their negative curent is
smaller.

9.3 Shielding current of electrons modifying the fast-
ions current

The coe¢ cient (nbcd =neutral beam current drive)

jnbcd = �nbcd � ffast�ions

where

�nbcd = 1�
Zfast�ions
Zeff

(1� L31)
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9.4 The e¤ect of trapped electrons on the NBI-induced
current (Start Cordey Jones 1980)

The paper trapped electron NBI start cordey jones 1980.
The FP equation for electrons will contain a convective derivative,�

vkbn+ vD� �rfe
and this leads to a neoclassical correction

��
@fe
@r

The distribution function for the electrons is perturbed by the fast ions

fe = FMe + f 0e

and there is also the distribution function of the beam fast ions.
The equation for electrons is

Ceb (FMe; fb) beam-electron momentum transfer

+Cei (f
0
e; FMi) accelerated electrons - friction by ions

+Cee (f
0
e; FMe) accelerated electrons drag other electrons

+Cee (FMe; f
0
e) accelerated electrons - friction by electrons

= �v
B�

B'

@f 0e
r@�

(parallel convection - projected on �)

where
� �

vk
v

Then the factor is
�v = vk

and multiplied with B�=B' obtains the projection of the parallel velocity on
the poloidal direction. Then actually in the right hand side we have

�v
B�

B'

@f 0e
r@�

= vk
B�

B'

@f 0e
r@�

= vkrkf
0
e

The fact that the distribution function f 0e dependes on � (equivalently on
lk) is due to banana e¤ects.
NOTE. So this equation expresses the basic equilibrium

vkrkf
0
e = C (collisions)

We know what to do
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� divide by vk,

� multiply by B

� surface average

this will cancel (by periodicity) the LHS. A constraint on the collision
operator will result, acting as an equation for f0.

The radial drift of the Maxwellian of equilbium vD �rfMe is not included.
An electrostatic �eld with potential � is not included since there is no such
act in the velocity space jejr�=ms � @fM@v for small �. Nor its time variation
@�=@t since we do not have time variation of the radial electric �eld as in
the case of the poloidal transit time magnetic pumping.
Here the ions are hot and they simply are slowing down by collisions with

the background ions and electrons. END.

The collisions are determined in general in terms of the Rosenbluth po-
tentials.
These potentials are expressed as integrals over functions that depend on

jv � v0j

a kind of "distance" in velocity space. Or, as shown in collisions.tex after
Morse Feshbach, this "distance" can be expressed in an expansion in Legendre
polynomials (something well known from electrdynamics).
It is assumed that there is a spherical system of coordinates in the velocity

space (v; �; '), where � is the pitch angle formed between the vector velocity
v and the magnetic �eld line.
It is assumed that there is azimuthal symmetry, i.e. no dependence on '.
Then the Legendre functions depend on

Pl (cos �)

An equivalent explanation is in the derivation of Ga¤ey. The pitch angle
scattering operator arises from the derivatives in velocity space requested by
the collision operator. Next, the pitch angle scattering operator is shown to
be the Legendre polynomial operator.

The fast ion distribution fb is expanded in Legendre polynomials whose
variable is the pitch angle �. This is a separation of variables, for v and for
�, in every term.

fb =
X
n

a(b)n (v)Pn (�)
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(see Cordey) and the factors that depend on the velocity v are

a(b)n (v) = nb

�
n+

1

2

�
Kn

1

v2b

1

2�
� (v � vb)

The coe¢ cients Kn are obtained from the angular distribution of the beam
K (�), � being the pitch angle variable, vk=v.

Kn =

Z +1

�1
K (�)Pn (�) d�

NOTE
In the work Hsu Catto Sigmar on NBI the separation of variables with

reduction of the Fokker Planck equation to two equations of eigenfunctions
P �

X
VnCn the Legendre polynomial occurs only when we adopt an ap-

proximation
p
"� 1.

And in Cordey NBI too
END

To solve the equation for the perturbed electron distribution function f 0e,
this is shown as composed of

f 0e = f (0) + h(0) + f �

f (0) = solution of the eq.

in absence of trapping
@f (0)

@�
= 0 (no poloidal variation)

This part of the function is due to the momentum transfer from the beam
fast ions to the electrons. It is the essential aspect of generation of the �ow
of electrons in the same direction as the fast ions.
The second term

h(0) � localized (� �) part of the dist. function

depends on �.

f � � non-localized part of the dist. function

depends on �.
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The three functions are expanded

f (0) = FMe

X
f (0)n (v)Pn (�)

h(0) = FMe

X
h(0)n (v; �)P1 (�)

f � = FMe

X
f �n (v; �)P1 (�)

Here only the
n = 1

terms will be retained in the expansions

f
(0)
1 ; h

(0)
1 ; f �1

for the calculation of the electron current.
The dependence on � suggests to take surface averagesD

h
(0)
1

E
=

Z 2�

0

d�

2�
h
(0)
1

hf �1 i =
Z 2�

0

d�

2�
f �1

The localized and non-localized distribution functions are solutions of the
collisional eq

Cei (f
�; FMi) friction by background ions

+Cee (f
�; FMe) + Cee (FMe; f

�) drag and friction with background electrons

= �
�
Cei
�
h(0); FMi

�
+ Cee

�
h(0); FMe

�
+ Cee

�
FMe; h

(0)
��

+
�
Cei
�
FMi; h

(0)
�
+ Cee

�
FMe; h

(0)
��
pitch�angle

The last square paranthesis is the pitch-angle part of the operators inside�
Cei
�
FMi; h

(0)
�
+ Cee

�
FMe; h

(0)
��
pitch�angle

=
1

4
�e

ne
v3th;e

1

x5
�
xE 0 (x) +

�
2x2 � 1

�
E (x) + 2Zeffx

2
�

� @

@�

�
�
�
1� �2

� @h0
@�

�
The error function

E (x) =
2p
�

Z x

0

exp
�
�x2

�
dx
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Using the expansions in Legendre polynomials in the equation for f � and
h(0), [in simple form is

Ce (f
�) = �Ce

�
h(0)
�
+ C0e

�
h(0)
�

] one obtains a system of uncoupled ordinary di¤erential equations for the
Legendre coe¢ cients.

The system is written by Cordey Jones Start Curtis Jones 1979.
In that case it was NO e¤ect of trapped particles.

a001 + P (x) a01 +Q (x) a1

=
16

3
p
�

1

W

�
�
xI3 (x)� 1:2x I5 (x)� x4

�
1� 1:2x2

�
(I0 (x)� I0 (1))

�
+R (x) this is the drive of the electron current

where
a1 =

D
h
(0)
1

E
+ hf �1 i

x =
v

vth;e

P (x) = �1
x
� 2x+ 2x2�

0

W

Q (x) = � 1
x2
� 2Zeff + �� 2x

3�0

W

Zeff =

X
Z2i ni

ne

W = �� x�0

�0 � d�

dx

� (x) = erf (x) =
2p
�

Z x

0

dt exp
�
�t2
�

In (x) =

Z x

0

dt a1 (t) exp
�
�t2
�
tn

v�fast � normalized fast ion velocity

=
vfast
vth;e
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The drive of the electron current is the Coulomb collision with the fast
ions.

R (x) = � B

W
�

8>>><>>>:
� 1

(v�fast)
2

�
6
5
x6 � 2x4

�
for

x < v�fast
or v

vth;e
<

vfast
vth;eh

v�fast +
6
5

�
v�fast

�3i
x for

x > v�fast
or v

vth;e
>

vfast
vth;e

with a constant
B � 4K1

nfast
n

[discussed above].
Here there is a di¤erent expression for R (x), re�ecting the fact that the

drive R now depends on h(0)1 .

R (x) =
hh01i
Wx2

�
x�0 +

�
2x2 � 1

�
� + 2Zeff x

2
�

The function h(0)1 (x) is determined byHazeltine, Hinton, Rosenbluth
1973

@h(0)

@�
=

24 Bp
1� �B

� H(�c � �) � 1Dp
1��B
B

E
35FMe f

(0)
1 (x)

where

� =
v2?
v2
1

Bp
1� �B =

vk
v
� �

the last term exists only for circulating particles.

The NBI modi�es the distribution function of the electrons

FMe ! FMe + f 0e

The equation for the non-Maxwellian perturbation f 0e is

vk
B�

B'

@f 0e
r@�

= CebFMe + Ceif
0
e + Ceef

0
e
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where the collision operators are

Ceb = electron - fast-ion

Cei = electron - thermal ion

Cee = electron - electron

Now it is introduced the distinction between the situation with NO TRAPPED
particles and the correction due to trapped particles

f 0e = f 0 + bf
the �rst part veri�es

CebFMe + Ceif
0 + Ceef

0 = 0

This is the simple dynamics of the electrons, neglecting any e¤ect of trapped
electrons

� accelerated by momentum transfer from the beam ions

� friction with the ions of the background plasma

� friction with the electrons of the background plasma

The regime in which the thermal electron velocity is much higher than
the fast ion velocity

vth;e � vfast�ion

there is a solution for the NON-TRAPPED part of the non-Maxwellian per-
turbation function

f 0 =
2Z2b
Zeff

nbvb
nv2th;e

vk K1 FMe

where

Zeff =

X
niZ

2
i

n

K1 � �rst order coe¢ cient of the Legendre expansion

of the angular distribution of fast ions

Knowing this part of f 0e will simplify the equation

vk
B�

B'

@f 0e
r@�

= (Cei + Cee) bf
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We adopt explicit forms for the collision operators

Cee bf = �eevk
@

@�

 
�
vk
B

@ bf
@�

!
pitch angle e� e

+�eevk
FMe

R
d3v �eevk bfR

d3v �eev2kFMe

(Connor1973)

and

Cei = �eivk
@

@�

 
�
vk
B

@ bf
@�

!
only pitch angle

where

� =
v2?
2B

�ei =
4�e4Zeff
m2
e

ln �
n

v3th;e

1

x3=2

�ee =
4�e4

m2
e

ln �
n

v3th;e

1

x3=2

�
d�

dx
+

�
1� 1

2x

�
�

�
x =

v2

v2th;e

� (x) =
2p
�

Z x

0

dt exp (�t)
p
t

the current is carried by the circulating electrons.
One must calculate the distribution function of the un-trapped (passing)

particles
f 0ep

from the equation

@f 0ep
@�

= � 2Z
2
b

Zeff

nbvb
nv2th;e

K1
1


vk=B
�FMe

�
 
1� �ee

�ee + �ei

R
d3v �eev

2
kFMe � huiR

d3v �eev2kFMe

!
and

hui =

�R
d3v

�eevk� FMe

hvk=Bi

�
�
�R

d3v �2ee
�ee+�ei

vk�FMe

hvk=Bi

�
1�

�R
d3v �2ee

�ee+�ei

vk�FMe

hvk=Bi

��R
d3v �eev2kFMe

��1
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9.4.1 Notes

the current is composed of

fast ion current

+reverse electron current

The reverse electron current is due to the same transfer of momentum from
NBI ions as for the thermal ions. But this motion of electrons in the same
direction as the thermal ions, both induced by the transfer from NBI, means
a current of opposite sign: the reverse electron current.
The quantity that measures the current produced by NBI is de�ned as a

ratio between the net current and the beam current

F =
jnet
jb

= 1�

R

d3v vkf
0
ep

�
nbZbvb

The expression is further written in terms of two parameters

F = 1� 4Zb
3
p
�Zeff

� I

�
�Z 1

0

dx
�ei

�ei + �ee
exp (�x)x3=2

+I

R1
0
dx �ee

�ee+�ei
exp (�x)

R1
0
dx �ee

�ee+�ei
exp (�x)x3=2R1

0
dx�ee

�ei
exp (�x)� I

R1
0
dx �2ee

�ei(�ee+�ei)
exp (�x)

!

with the de�nition

I =
3

4
hBi

Z 1=Bmax

0

�d�Dp
1��B
B

E

10 Trapped electron correction to the NBI
current Lin-Liu Hinton

This is the paper by Lin-Liu Hinton.

The expression of the Neutral Beam Current

jNBCD = jfast

�
1� Zfast

Zeff
(1�G)

�
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where
jfast � current of fast ions
Zfast � charge of fast ions

Zeff � e¤ective charge of background ions

G � trapped ELECTRON correction to Ohkawa NBCD
The magnetic �eld

B =
B0
h
=

B0
1 + " cos �

Important assumption
ve � vfast

The fast ions have a directed velocity

ufast

Method

� Fokker Planck analysis

� electron-electron collisions

� fast ions - electrons collisions

The current

jk = jfastk + jek

= nfastZfaste ufast � e

Z
d3v vk fe1

Then the objective is to calculate the �rst order correction to the electron
distribution function, fe1, which results from

� neoclassical drifts

� neoclassical trapping (structure of distribution in velocity space)

� collisions of electrons with background ions

� collisions with fast ions

� collisions between electrons
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the equation

vkrkfe1 = C lin
ee + Cei � vDe �r 

1

ne

@ne
@ 

fe0

where
2� � poloidal �ux function

Cei = �ei (v) L [fe1]

+�eff (v)
1

Te=me

vk ufastk fe0

L � pitch angle scattering operator
�ei (v) � scattering rate

�eff (v) =
Z2fast nfast

Zeff ne
�ei (v)

One makes the substitution

fe1 = I
vk

e

1

ne

@ne
@ 

fe0

+g

with
I = RB'

and use

vDe �r = �I vkrk

�
vk

e

�
The equation becomes

vkrkg = Ce [g]

+�ei (v) I
vk

e
fe0

�
� 1
ne

@ne
@ 

+
1

I

1

pe

Zfast
Zeff

jfastk B

�
The operator Ce contains the linearized electron-electron collision opera-

tor and pitch angle scattering of electrons and ions

Ce = C lin
ee

+�ei (v)L

The bounce frequency is very highcompared with collisionality.

g = g0 + g1 + :::
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The small parameter is �
!e;bounce
�e="

��1
� 1

Then
vkrkg0 = 0

The equation for g1 is written and becomes the solubility condition

�
I
dl

vk
Ce [g0] = �ei (v) fe0

I
dl I

1


e

�
� 1
ne

@ne
@ 

+
1

I

1

pe

Zfast
Zeff

jfastk B

�

dl =
B

B�

dl�

from which the function g0 will be calculated.
The loop integration of the RHS gives zero for trapped electrons.

g0 = H

�
B
1


e

�
� 1
ne

@ne
@ 

+
1

I

1

pe

Zfast
Zeff

jfastk B

��
where

H � H (v;  )

The average is over the �ux surface

hAi =

I
dl�
B�
AI

dl�
B�

g0 = I
1

e=me

H

�
� 1
ne

@ne
@ 

+
1

I

1

pe

Zfast
Zeff



jfastk B

��
With this solution for g0 we return to the distribution function for the

electrons, fe1 and calculate the current of the electrons, the second term in
the general expression of the full current

jk = jfastk

�I 1
B
neTe

1

ne

@ne
@ 

� e

Z
d3v vk g0

= jfastk

�I 1
B
neTe

1

ne

@ne
@ 

�
I neTe
B

hB2i

�
1

ne

@ne
@ 

� 1
I

1

pe

Zfast
Zeff



jfastk B

��
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de�ning 
 �integral of H.
The authors note the dependence of g with �, seen in the presence of B

as factor. This is also noted if the equation for g , which is (see above)

vkrkg = Ce [g]

+�ei (v) I
vk

e
fe0

�
� 1
ne

@ne
@ 

+
1

I

1

pe

Zfast
Zeff

jfastk B

�
is integrated over velocity space

rk

�
1

B

Z
d3v vk g

�
= 0

We note that vk integrated via g (part of the distribution function which is
di¤erent of the neoclassical drift-induced ��=Ln � fe0 ) is a parallel current.
This is the wighted with

1

B

and the result is independent on � , it does not have variation along the
magnetic �eld line

rk ! 0

which can be formulated: the parallel current resulting from g has precisely
the same variation along the line as the magnitude of the magnetic �eld B.
Their ratio is constant along the line.

The equation for g0 contains H and further its integral, 
.
We have to �nd 
 and for this it is taken the surface average of the

equation 

jkB

�
=



jfastk B

�
� I pe

1

ne

@ne
@ 

�
 I pe
�
1

ne

@ne
@ 

� 1
I

1

pe

Zfast
Zeff



jfastk B

��
Now it is suppressed the part of the current that comes directly from the

fast particles
jfastk = 0

and what remains is called bootstrap

jk B

�
bootstrap

= � (1� 
) I pe
1

ne

@ne
@ 
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and this equated to

= �L31
1

ne

@ne
@ 

which allows to identify


 =
L31
I pe

� 1 = l31 � 1

the total NBCD

jNBCD = jfastk � (1� l31)
Zfast
Zeff

B

hB2i


jkB

�
and

hjNBCD Bi =


jfastk

� �
1� Zfast

Zeff
(1� l31)

�
G = l31 =

L31
I pe

11 E¤ect of trapped particles on the slowing
down of fast ions Cordey

In a time of slowing down a fast ion is scattered at 90�. Therefore trapped
and circulating fast NBI ions can change their state.

� scattering < � slowing�down

It is necessary to determine the full distribution function of NBI fast ions,
in both regions : trapped and circulating.
The equation is bounce-averaged Fokker Planck.
The Fokker Planck equation is separable in

� =

r
1� �B0

1

�

and
v

Then a set of eigenfunctions that re�ect the geometry in � is adopted.
NOTE that here the symbol � is NOT vk=v as it is sometimes de�ned.
It will become clear below that B0 is measured at the furthest point on

the equatorial plane.
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The usual de�nition is
� =

�

w
or

� =
v2?
v2

1

B (x)

We have

B (x) =
B0
h

we place the upperscript axis to the usual choice

B =
Baxis
0

1 + " cos �

= BCordey
0

(1� " cos �)

1� "

then
BCordey
0 � Baxis

0

�
1� r

R

�
Further

� =

r
1� �BCordey

0

1

�

=

r
1� �Baxis

0

1� "

�

The part inside

v2?
2B

1

v2=2
Baxis
0 (1� ")

=
v2?
v2

h

1� "

In the usual notation

usual notation
vk
v
� � =

p
1� �B

where

� =
v2?
2B

1

v2=2

In this usual notation

1� �B = 1� v2?
v2
=
v2k
v2

vk = v
p
1� �B
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For comparison, in Cordey

��vk��Cordey = v

r
1� B

B0

�
1� �2

�
= v

s
1� B

B0

�
1�

�
1� v2?B0

v2B

��

= v

s
1� B

B0

v2?B0
v2B

= v

q
v2k

v
OK

Formal, the choices of Cordey are

�Cordey =
v2?B0
v2B

and in this way � is an invariant of the orbit

�Cordey =

r
1� �B0

�

We conclude that
�Cordey 6= �usual =

vk
v

and �usual is NOT an invariant of the orbit.
END.

The fast ion Fokker Planck equation in guiding centre approximation
(see also collisions text for Cordey Connor, the preceding article)
NBI ions have an anisotropic source.

@f

@t
+ ��vk

@f

r@�
(neoclassical correction)

=
1

� s

�
1

v2
@

@v

��
v3 + v3c

�
f
	

(slowing down)

+�
B0
B

v3c
v3

��vk��
�v

@

@�

(�
1� �2

� ��vk��
�v

@f

@�

)#
pitch angle

+S (source of NBI)

where
f � f fast�ions

Note
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This is the equation for the fast ions in mirrors, Hinton and Rosen-
bluth.
There is a solution, for the boundary and initial condition.
The solution is also used in NBI Hinton Rosenbluth, torque from

transversal NBI in tokamak.
End.

NOTE
This equation is for fast ions of NBI. (see also Hsu Catto Sigmar for

isotropic source, which can be applied to ALPHAs)
The slowing down time � s is attributed to electrons. In Hsu Catto Sigmar

it is explained that this is true if the initial velocity of the fast ions is much
higher than the critical velocity

v0 � vc

In this region

� there is drag (not pitch angle), slowing down, and

� The drag (slowing down) is dominated by electrons: after creation of
the fast ion, it collides with the electrons. At a critical velocity the
collisional e¤ect of electrons is equal to that of ions. All background
ions + impurities are compressed in collision operator by quantities like
Zeff and Z.

� Cordey says that collisions with background ions lead to radial di¤u-
sion.

We see the neoclassical correction ��=a and the rest is collision, pitch
angle and slowing down. Caution, a 6= Ln since f0 is NOT Maxwellian.
No energetic action � vk e

�
�rke�� @

@�
on parallel direction. The fast

ions are not obliged to make work against an electric �eld, either poloidal
E� � �@e�=r@� or parallel Ek or radial Er � �@�(0)=@r.
It is normal: the fast ions do not have a stationary distribution with

variation of density on the magnetic surface, as it is for impurities (either in
equilibrium or in rotation).
END.

In this article it is adopted the formula

� =

r
1� v2?B0

v2B

=

r
1� �B0

1

w
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It results that �Cordey is an invariant of the orbit.

��vk�� = v

r
1� B

B0

�
1� �2

�
or �vk

v

�2
= 1� B

B0

�
1� �2

�
v2?
v2

=
B

B0

�
1� �2

�
�2 = 1� B0

B

v2?
v2

The Spitzer slowing down

� s =
3

16
p
�

me

e4
mfast

Z2fast

1

ln�

v3e
ne

� T 3=2

n

� =
1

2

Zeffmi

Z mf

Z =

X
Z2j njmj

neme

� 1

Zeff =
X njZ

2
j

ne

The critical velocity is

vc =

�
3
p
�

4
Z

�1=3�
me

mi

�1=3
� ve

This velocity is the limit where the drag due to electrons becomes equal to
the drag by ions.
The geometrical e¤ects enter through

dependence of B with �

BCordey = B0
1� " cos �

1� "
(!)
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" =
r

R
We note that for � = 0 (which is the point where the last magnetic surface
intersects the equatorial plane) we have

B = B0 = Bmin

BCordey
0 � magnetic �eld at the furthest point

on equatorial plane

NOTE
Usually we take

Busual =
B0
h
=

B0
1 + " cos �

B0 is USUALLY the magnetic �eld on the axis

END
Other notations

� � Bp

BT

The authors make the observation that the only variables now are

(�; v)

which are invariants of the particle motion.
There was a change of variables, from local variables to invariants

v0k
v0
=

r
1� B

B0

�
1� �2

�
and v0 = v

to
(�; v)

The small quantity for expansion
� bounce
� s

� 1

(many bounces between two collisions)

f = f0 +
� bounce
� s

f1 + :::

We remind that this is the distribution function of FAST IONS.
It is essentially determined by a source S and by the drag, pitch angle

scattering.

Bounce averaging

The procedure
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� the zeroth order
@fh0
@�

= 0

corresponds to the very short time of bounce on bananas compared to
the time between two collisions �B=� s � 1.

� one continues with the �rst order f1

� next, impose the condition that the �rst order f1 function is periodic
on �; this means to take average over �, hi.

� this results in a constraint for the zeroth order f0

It is

� s
@f0
@t

=
1

v2
1

v2
@

@v

��
v3 + v3c

�
f0
�

+�
v3c
v3

1

�
D
v
vk

E @

@�

(�
1� �2

� 
vk
v

�
�

@f0
@�

)
+� sS

NOTE
In zero order we get no information of f0 except that it is constant on �.
In the next order we have to consider that f0 has time variation: source

+ drag (slowing down) and pitch angle scattering.
END

The new averages are

hi � bounce averaging operator

see Rosenbluth Hinton

Dvk
v

E
=

1

2�
p
B0

I q
�2B � (B �B0) d�

for circulating particles

Dvk
v

E
=

1

2�
p
B0

Z B

A

q
�2B � (B �B0) d�

for trapped particles between A and B

These "averages" are integrations along the trajectories: full circulating tra-
jectory, all ��s. Respectively between the two limits ��s of the banana.
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Here the magnetic �eld can be introduced

BCordey = B0
1� " cos �

1� "

DIGRESSION
From the paper NBI currents Connor Cordey.
Here too

B = B0
1� " cos �

1� "

with B0 the minimum magnitude of B, " = r
R
,

Dvk
B

E
=

I
d�

p
2 (w � �B)

B
for circulating particles

and Dvk
B

E
=

Z B

A

d�

p
2 (w � �B)

B
for trapped particles

and the variables that are used

w =
v2

2

� =
v2?
2B

� =

r
1� �B0

w
=

r
1� v2?

v2
h

� =
v2?
v2
h

B = B0
1� " cos �

1� "

In the neighborhood of perfect trapping the parallel velocity is near zero,
� = vk=v ! 0, and v2? � v2,

� � 0

like
p
�" cos �
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the averages are Dvk
v

E
� �

2B0

r
w

"
�2�

1

vk

�
� �p

w"

In the opposite limit, perfect circulating hot ions, along magnetic �eld
lines, both averages are independent of �.
The two limits adopted as reference (to avoid the intermediate values of

� since di¢ cult analytically) are

� the small � � 1 ! perpendicular injection

� larger � � 1, parallel injection

END DIGRESSION

To check, the integrand in
I q

�2B � (B �B0) d� is

B �B0 = B0

�
1� " cos �

1� "
� 1
�
= B0

"� " cos �

1� "

and

�2B � (B �B0) = �2B0
1� " cos �

1� "
�B0

"� " cos �

1� "

=
B0
1� "

�
�2 � "�2 cos � � "+ " cos �

�
=

B0
1� "

�
�2 � "+ "

�
1� �2

�
cos �

�
We have to computeDvk

v

E
=

1

2�
p
B0

I q
�2B � (B �B0) d�

=
1

2�
p
B0

r
B0
1� "

I
d�

q
�2 � "

24s1 + "
�
1� �2

�
�2 � "

cos �

35
We have to look for I

d�
p
1 + � cos �
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We should use Gradshtein Ryzhik 3.671Z �

0

d�
p
a+ b cos � = 2

p
a+ bE

 r
2b

a+ b

!
and in our case

a = 1

b =
"
�
1� �2

�
�2 � "

a+ b =
"� "�2 + �2 � "

�2 � "
= �2

1� "

�2 � "

2b

a+ b
=
2
"(1��2)
�2�"

�2 1�"
�2�"

= 2

�
1

�2
� 1
�

"

1� "

NOTE that B0 is the magnetic �eld at � = 0, i.e. at the farthest point
on the equatorial plane. ThenDvk

v

E
=

2�

�
E

�
2"

�2

�
circulating ions

�2 > 2"

Dvk
v

E
=

2
p
2"

�

�
E

�
�2

2"

�
�
�
1� �2

2"

�
K

�
�2

2"

��
trapped particles

�2 < 2"

and, for the average of the inverse ratio�
v

vk

�
=

2

�
K

�
2"

�2

�
circulating ions

�2 > 2"

�
v

vk

�
=

2

��bound
K

�
�2

2"

�
trapped ions

�2 < 2"
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The expressions only depend on � which is an invariant of the orbit.
The boundary in velocity space between trapped and circulating particles

is
�boundary =

p
2"

NOTE
that Hsu Catto Sigmar have the following formula

�t =
1

�

p
2" (1� ") + (1 + ") arcsin

"r
2"

1 + "

#
and for the trapping/passing boundary

�c = 1� "

=
B0
Bmax

Also, in Hsu Catto Sigmar the limiting values

� ! 0 which is strongly passing v2? ! 0

#
h�i ! 1

and
@

@�
h�i = �1

2

The other limit

� ! 1� " which is deeply trapped v2? ! v2 at � = 0

#
h�i ! �boundary � �t

@

@�
h�i is logarithmically singular

END

The equation for f0 (resulted from the consistency condition - periodicity
on � - of the �rst order f1) needs a condition at boundary
vk

v

�
�

@f

@�

�����
�+boundary

�

vk
v

�
�

@f

@�

�����
���boundary

= 2


vk
v

�
�

@f

@�

�����
��boundary
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This is the conservation of the �ux of particles between the circulating and
trapped regions in velocity space.

To keep in mind
the conservation of the �ux across the separatrix between the trapped and

the passing regions is expressed as a DISCONTINUITY of the derivative
@f=@� .
At the transition point � =

p
2"�

v

vk

�
has a logarithmic singularity

the derivative of
Dvk
v

E
is singular

In the trapped region there should be symmetry relative to the sign of vk,

f (��) = f (�)

The derivative

@f

@�
is discontinuous at �boundary

Close to the transition�
v

vk

�
has logarithmic singularity

and
@

@�

Dvk
v

E
is singular

and
� bounce !1

since the trapped particles become circulating.
The equation obtained through expansion in �bounce

�s
< 1 cannot be used.

the width of the transition layer in velocity space is

�� �
r
� bounce
� s

� 10�3
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11.1 Solution of the equation for f0
The equation is separable in � and v.

f0 =
X

an (v)Cn (�)

here Cn are eignefunctions of

1

�

d

d�

�
1� �2

�
%
dCn
d�

+ �nCn = 0

Cn continuous at � = �boundary

%
dCn
d�

����
�+boundary

� %
dCn
d�

����
���boundary

= 2%
dCn
d�

����
��boundary

Cn (��) = Cn (�) for � �boundary < � < �boundary
Cn �nite at � = �1 , 0

The two functions are de�ned as

� (�) �
�
v

vk

�
�

% (�) �
Dvk
v

E 1
�

Other forms of these de�nitions

� (�) = �

�
1

�

�
% (�) =

1

�
h�i

For the coe¢ cients an,

1

v2
d

dv

��
v3 + v3c

�
an
�
� �nan = S0� (v � v0)Kn� s

for the source

S (�; v) = S0� (v � v0)K (�)

= S0� (v � v0)
X

KnCn
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The restrictions on Cn lead to

Cn (�) = Cn (��)
even set

or

Cn
�
��boundary

�
= 0

odd set

Cn (�) = �Cn (��) for j�j > �boundary
and Cn (�) = 0 for � �boundary < � < �boundary

For the boundary condition

an (v = v0) = 0

we obtain

an (v) = S0� sKn

��
�
1� v

v0

�
� (v30 + v3c )

��n=3

(v3 + v3c )
1+��n=3

�
v

v0

���n
This gives the full solution

f0 = S0� s
X

Kn
(v30 + v3c )

��n=3

(v3 + v3c )
1+��n=3

�
v

v0

���n
Cn (�)

for v < v0

To use this expression one has to solve numerically for Cn using exact
expressions for



vk=v

�
, ...

11.2 Approximative equations and Legendre polyno-
mial solution

The idea of approximation is to �x the averages involving � (as � and %) by
adopting their limiting values for

� � = 0 which means deeply trapped, the parallel velocity is zero vk ! 0.
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� � = 1 which means full passing, there is no perpendicular velocity since
vk ! v.

Take the approximations

� �
�
v

vk

�
� ! �

�boundary

% �
Dvk
v

E 1
�
! �

2�boundary
both for j�j < �boundary (trapped)

and

� = 1

% = 1

both for j�j > �boundary (circulating)

The equations for circulating ions

d

d�

��
1� �2

� dCn
d�

�
+ �nCn = 0 for j�j > �boundary

For trapped ions

1

2

1

�

d

d�

��
1� �2

�
�
dCn
d�

�
+ �nCn = 0 for j�j < �boundary

11.2.1 Trapped

The substitution
x = 1� 2�2

leads for TRAPPED ions

2
d

dx

�
1� x2

� dCn
dx

+ �nCn = 0

has solution
Cn (�) = P�n (�)

The indice results from
P�n

�
�boundary

�
= 1
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�n = n+
4�boundary

�

�2 (1 + n=2)

�2 (1=2 + n=2)

and

�n = �n (�n + 1)

= n (n+ 1) +
4�boundary

�
(2n+ 1)

�2 (1 + n=2)

�2 (1=2 + n=2)

11.2.2 Circulating

The solution of the equation for the circulating ions

Cn = P�n (�) for � > �boundary

To �nd the indice, one has to consider the solution for trapped ions close to
the limit

Cn = A

�
1� �n

�n + 1

2
�2
�

for j�j < �boundary (trapped)

Matching the two solutions at the limit �boundary

2
dP�n
d�

�
� = �boundary

�
= ��boundary � �n (�n + 1) P�n

�
�boundary

�
and

A =
P�n

�
�boundary

�
1� �n

�n+1
2
�2boundary

The order �n can be obtained approximately

�n = n+ �boundary n (n+ 1)
�2
�
1
2
+ n

2

�
2��2

�
1 + n

2

�
n even

�n = �n (�n + 1)

= n (n+ 1) + (2n+ 1) �boundary n (n+ 1)
�2
�
1
2
+ n

2

�
2��2

�
1 + n

2

�
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11.2.3 Collecting the results for Cn

The result for n ODD

Cn = P�n (�) for �boundary < � < 1

n odd

�n = n+
4�boundary

�

�2 (1 + n=2)

�2 (1=2 + n=2)

and
Cn = 0 for � �boundary < � < �boundary

Cn = �P�n (��) for � 1 < � < ��boundary

The result for n EVEN

Cn = P�n (�) for �boundary < � < 1

Cn =
P�n

�
�boundary

� �
2� �n (�n + 1) �

2
�

2� �n (�n + 1) �
2
boundary

for � �boundary < � < �boundary

Cn = P�n (��) for � 1 < � < ��boundary

11.3 The distribution functions

11.3.1 Passing ions

The expression

f0 = S0� s
X

Kn
(v30 + v3c )

n(n+1)�=3

(v3 + v3c )
1+n(n+1)�=3

�
v

v0

�n(n+1)�
Pn (�)

+S0� s
p
2"
X

See also Ga¤ey.
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12 Fast NBI ions in mirrors Hinton Rosen-
bluth 1982

Also in impurities.tex.

the equation for the distribution function for the fast ions from mirrors
Hinton Rosenbluth (see also NBI)

@f

@t
+
�
vkbn+ vD� �rf strangely: convective term

��s
2mi

mfast

v3c
v3
�
1

B

@

@�

�
��
@f

@�

�
pitch angle

��s
1

v2
@

@v

��
v3 + v3c

�
f
�

slowing down

= S
� (v � v0)

v20

(what is strange: the neoclassical correction vD � rf - is-it important
here ?)
Note looks like Cordey Houghton. END.

The slowing down due to the electron drag is

�s =
me

mfast

Z2fast
1

� e

1

� e
=

16
p
�

3

e4

m2
e

ln �
ne
v3th;e

and the critical velocity

vc =

�
3
p
�

4

me

mi

�1=3
vth;e

The critical velocity vc is, like usual, the limit where the drag by electrons
(for the fast NBI ions) becomes comparable with the drag by ions. After
this limit, the slowing down is accompanied by pitch angle scattering and
velocity-space remodelation of f .

Technical advancements.
In the case of mirrors the equation can ignore the drift term.
This is similar to the anisotropic distribution of the NBI fast ions.
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What remains is the variation of f along the line, @f=@l balanced by the
pitch angle scattering and by the friction (slowing down) collisions.

vk
@f

@lk

�
this is vkrk

�
��s

2mi

mfast

v3c
v3
�

B

@

@�

�
��
@f

@�

�
(pitch angle)

��s
1

v2
@

@v

��
v3 + v3c

�
f
�

(slowing down)

= 0

Then it is bounce averaged : it is divided by � (and in the �rst term we
have v� = vk) and then it is integrated over the line. The remaining factor
in the �rst term v is invariant, being the energyI

dlk�

and the �rst term is zero by periodicity.

2mi

mfast

v3c
v3

@

@�

��I
dlk

�

B

�
�
@f

@�

�
+

�I
dlk
1

�

�
1

v2
@

@v

��
v3 + v3c

�
f
�

= 0

The boundary condition at the limit where the fast particles are gener-
ated, v0, is

f ! 1

�s (v30 + v3c )

I
dlk

1
�
SI

dlk
1
�

For the solution.
See also Cordey Houghton, the one-dimensional approximation when

the pitch angle can be neglected, for high velocities, slowing down on the
electrons.
Substitutions

u � v

vc
by this new variable, the physical velocity v is compared with the reference
critical velocity vc.

f =
G (u; �)

v3c (u
3 + 1)

75



Results

2mi

mfast

1

u3 (u3 + 1)

@

@�

�
I1 (�)�

@G

@�

�
+I2 (�)

1

u2
@G

@u
= 0

with the de�nitions

I1 (�) =

Z st

0

ds
�

B

I2 (�) =

Z st

0

ds
1

�

where st is the turning point

�B (st) = 1

Another transformation: a new time-like variable (but, of course, NOT
time)

� =
2

3

mi

mfast

ln

�
1 + u�3

1 + u�30

�
where u0 � v0

vc

The notation is important u0 is the velocity of birth compared with the
critical velocity vc.
The equation

@G

@�
� 1

I2 (�)

@

@�

�
I1 (�) �

@G

@�

�
= 0

Note that the �rst term is what remains from the slowing down part of
the collision operator. The second term is the pitch angle part.

The general form

@G

@�
= �A (�) @G

@�
+D (�)

@2G

@�2

A (�) � �
d
d�
(�I1)

I2
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D (�) � �I1
I2

In the case of mirrors

I2 (�) = �2
dI1
d�

Substitution
G1 (�; �) = exp [� (�; �)]

with
@�

@�
= �A (�) @�

@�
+D (�)

"
@2�

@�2
+

�
@�

@�

�2#
Further

� (�; �) = �w (�)
�

� 1
2
ln �

+y (�; �)

and

y (�; �) = y0 (�) + y1 (�)� �

+:::

After equating terms of the same power in � it results

w (�) =
1

4

"Z �

�0

d�p
D (�)

+ c

#2

y0 (�) = �
1

4
ln [�I1 (�) I2 (�)] + k

The solution

G1 (�; �) =
Q

4�3=2
1p

D (�0) � �

�
�
�0I1 (�0) I2 (�0)

�I1 (�) I2 (�)

�1=4
� exp

�
�w1 (�)

�

�
where w1 is w with c = 0.
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13 The transport of FAST alpha (isotropic)
IONS Hsu Catto Sigmar

It is Hsu Catto Sigmar PF-B2 (1990) 280.
It is the basis forHsu Shaing Gormley Sigmar bootstrap of alphas.
It uses much of Cordey Houghton, of Connor Cordey, of Cordey

Start and of Cordey Cox.
All work Fokker - Planck equation for a fast ion component, with full

collision operator. The other papers taken as reference, work for NBI.

Part of text is in collisions.tex, and in bootstrap.tex.

More physics.
The �ux surface averaged Fokker Planck eq.
Their theory is NOT appropriate to describe the distribution function of

fast ions whose width of the banana is comparable with the plasma radius.
It also is NOT appropriate for NBI fast ions whose source is anisotropic

in the velocity space.

The collisions:

� drag (friction, collisions with electrons and then with background ions
with di¤erent velocity)

� pitch angle

A fomulation of the �rst approaches.
The transport decreases

� �rst very hot ions are generated isotropically (alpha).

� second, they are slowed down by collisions with background electrons
and later with ions, that induces reduction of the perpendicular veloc-
ities

"banana collapse" : the reduction of the width of the bananas of the fast
ions due to the slowing down by drag of the background ions.

A fast ion undergoes

� more drag when the energy is high (at birth), �rstly by electrons
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� progressively more pitch angle scattering after the drag has slowed
it down, from background ions. Then the velocity space structure
trapped/circulating is modi�ed

Three classes of fast ions

� those that su¤er more drag

� those that have in comparable proportion drag and pitch angle

� those that su¤er more pitch angle scattering

The contribution to transport depend on

� the inverse aspect ratio " (toroidality)

� the ratio
v0
vc
=

birth velocity
critical velocity

or the birth velocity v0 and the critical velocity vc.

For fast ion velocities that are higher than vc

vfast�ion > vc

the electrons produce a drag that is higher than that of the background ions.
The drag caused by electrons produces slowing down of the fast ions. At

a limit of velocity, vc, the drag of the electrons becomes equal to the drag by
ions.
So the history consists, after generation of a fast ion, of: (1) slowing down

by the electrons until the reduced velocity becomes comparable with the
critical velocity; (2) then the slowing down is taken over by the background
ions, together with pitch angle scattering.

The Fokker Planck equation for the fast ions, bounce averaged - is a second
order di¤erential equation in two-variables. The method is as in Cordey:
separate the variables f0 =

X
an (v)Cn (�) and the equation into two:

� a second order eq. for pitch-angle scattering variable �, and

� an �rst order di¤erential equation for the ratio velocity/critical-velocity
v=vc
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The source from fusion

S = nDnT h�f vi

this is the rate of generation of alpha ions.
The bounce averaged equation

@f

@t
= C (f) +

S

4�v2
� (v � v0)

and

C (f) =
1

� s

@

@v
�
��
1 +

v3c
v3

�
vf +

1

2

v3b
v3
�
v2 I� v v

�
� @f
@v

�

NOTE NOTE NOTE
We copy from collision.tex the �nal part of the derivation made byGa¤ey

for collisions between beam ions and background ions. Here

fb � beam-ions distribution function

fi � ions

First

C (fb; fi)

= �bi
@

@v
�
�
@2v

@v @v
� @fb
@v

+
mb

mi

2v

v3
fb

�
An important expression

@

@vi
�
�

@2vi
@vi @vi

� @fb
@vi

�
is calculated introducing the variables in the velocity space

(�; �; ')

� = cos �

=
vi
vi
� bn

=
vk
v
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then

@�

@vi
=

@

@vi

vi
vi
� bn

=
@2v

@vi @vi
� bn

It is assumed that the distribution function fb does not depend on the
angle '.

@fb
@'

= 0

@fb
@vi

=
@fb
@v

@v

@vi

+
@fb
@�

@�

@vi

We multiply this formal equality by

@2v

@vi @vi

It results

@fb
@vi

� @2v

@vi @vi
=

@fb
@v

@v

@vi
� @2v

@vi @vi

+
@fb
@�

@�

@vi
� @2v

@vi @vi

we take into account, for the second term

@�

@vi
=

@2v

@vi @vi
� bn

and for the �rst term

@xij
@vi

� @2xij
@vi @vi

=
1

vth;j

vi
vi
�
�
1

vi
I� vi vi

v3i

�
= 0

where we can take the particular case, for clarity

vj = 0

xij = jvij = vi
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Assumption that fb is axisymmetric in velocity space relative to the di-
rection of B. This introduces � = vk=v.

@fb
@vi

� @2vi
@vi @vi

=
@fb
@�

@�

@vi
� @2vi
@vi @vi

=
@fb
@�

�
@2vi

@vi @vi
� bn� � @2vi

@vi @vi

=
@fb
@�
bn � 1

vi

@2vi
@vi @vi

@

@v
�
�
@fb
@vi

� @2v

@vi @vi

�
=

�
@2fb

@�2
bn � 1

vi

@2vi
@vi @vi

+
1

v

@fb
@�

@

@v

�
� @2vi
@vi @vi

� bn
=

�
1� �2

� 1
v3
@2fb

@�2
� 2�
v3
@fb
@�

=
1

v3
@

@�

��
1� �2

� @fb
@�

�
This will lead to

C (fb; fi)

= �bi
1

v3

�
@

@�

�
1� �2

� @fb
@�

+
mb

mi

2v
@fb
@v

�
END END END

NOTE
The equation consists of evolution in the velocity space.
There is no spatial variation of the SOURCE.
It is hard to see how to apply this to the transient expansion of bananas

which intrude one half in the layer
END

NOTE
Apparently there is no neoclassical contribution vD �rf (0) to the Fokker

Planck equation.
Later it is introduced.
END
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The two particular values of the velocity are

vc =
3
p
�p
2

1
p
me

X
j

Z2j nj ln �j

mj

ln �e

T
3=2
e

ne
critical velocity of the fast ions

boundary from drag by electrons to drag by ions

mj � mas of background ions, incl. impurities

vb =
3
p
�p
2

1
p
me

X Z2j nj ln �j

m

ln �e

T
3=2
e

ne
velocity for the pitch angle scattering

of fast ions by the thermal ions

m � mass of fast ions

where j � ion species, m �fast ions

� s =
3

4
p
2�

1
p
me

m

Z2e4
1

ln�e

� ne

T
3=2
e

where

� s � slowing down time by drag produced by ELECTRONS

vc � speed above which electron drag dominates

(critical velocity)

and

vb � pitch angle scattering by ions
� sv

3

2v3b
� de�ection time

Remark the change betweenX Z2j nj ln �j

mj

which is in the critical velocity withX Z2j nj ln �j

m

which is in the pitch angle velocity.
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13.1 Solution of the drift kinetic equation.

Expansion in
��
L
� 1 neoclassic

Bounce motion is very fast compared with slowing down. Expansion in

time of bounce
time of slowing down

=
� bounce
� s

� 1

The zeroth order can be written explicitely

f0 = S
� s

4� (v3 + v3c )
� (v0 � v)

NOTE
In Cordey Houghton 1973 the equation for the distribution function

of the fast NBI (anisotropic) ions is reduced by approximation to a one-
dimensional equation in the regime v � vc (i.e. when there is slowing down
on the background electrons and the pitch angle scattering is negligible).
Here one-dimensional means, in velocity space, that f is only dependent on
v NOT on vk:

� s
@fb
@t

=
1

v2
@

@v

��
v3c + v3

�
fb
�

+� s eS (v � v0) � (� � �0)

(where fb is for BEAM-ions) with solution

fb = � s
1

v3c + v3
� (� � �0)

Z v�

v

dv0 v02 eS (v0 � v0)

with the de�nition

v� �
��
v3c + v3

�
exp

�
3t

� s

�
� v3c

�1=3
After adopting a shape for eS (v � v0) as a Gaussian and after further simpli-
�cation it results an time-asymptotic solution

fb = S
� s

v3c + v3
� (� � �0)

This is the explanation for the initial form adopted for fb.
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Compare with f0 = S �s
4�(v3+v3c )

�(v0 � v).
END

NOTE about zeroth order.
If the source is anisotropic in the velocity space (like in NBI) then the

zero order distribution function is strongly changed, by pitch angle scattering

f0 = f0 ( ; v; �)

When the banana is very large

�rb �
p
"��

the trapped particle experiences di¤erent friction forces on one side and the
other side of the orbit, and f0 becomes a function of also �

f0 ! f0 = f0 ( ; �; v; �)

END

NOTE
Cordey NBI �nds for the zeroth order distribution function of fast NBI

ions the simple property
@f0
@�

= 0

but after writting the �rst order�s equation f1 and using periodicity, one
obtaines an equation for f0 in velocity space.
END

Gyroaverage �rst.
The equation in the �rst order

vkrk

�
f 1 +

I



vk
@f0
@ 

����
�=const

�
= C

�
f 1
�

where f is gyroaveraged.

B =r'�r + Ir'

J =
1

j(r'�r ) �r�j =
1

1
R
RB�

1
r

=
R

RB�
rBT

BT

=
qR

BT

=
qR

B0
h

�
�
qR0
B0

�
h2

dependence on � is ! 1 + 2" cos �
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B �r =
1

J

@

@�

since B �r = (B0=h)rk =
B0
h
B�
B

@
r@�
= 1

h qR
B0

@
@�
= 1

J
@
@�
.

The gyrophase averaged collision operator is

C (g) =
1

� s

�
1

v2
@

@v

��
v3 + v3c

�
g
�

+2
v3b
v3
h �

@

@�
��

@

@�
g

�
where

g � gyrophase averged part of the distrubution

function, = 0 in the trapped region

where, the de�nitions are

� =
v2?
v2
h

� =
vk
v
= �

r
1� �

h

Therefore, the overbar, is gyration-average. No bounce average yet.
These must be compared withCordey where the de�nitions are di¤erent.

Using the expression of the zeroth order distribution function of the fast
ions (isotropic) alphas f0 , the derivative is

@f0
@ 

����
�=const

=

�
@

@ 
ln (S� s)�

v3c
v3 + v3c

@

@ 
ln v3c +

3

2

v3

v3 + v3c

Ze�

mv2=2

@

@ 
ln�

�
f0

The solution for f 1 is obtained adopting the form

f 1 =

�
�I 1

2
0
v
@f0
@ 

����
�=const

�
(2h� + P )

where 
0 = eB0
mi
for B = B0

h
.The �rst term is

�I 1

2
0
v
@f0
@ 

����
�=const

� 2h� = �I 1


vk
@f0
@ 

����
�=const

which is precisely the �rst order neoclassic correction. We note that this is
the usual neoclassical correction, in order 1 in ��=Ln.
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The �rst part is OK, it is the neoclassical correction to the 0 distribution
function.
But the second part?
It is a factor �I 1

2
0
v @f0

@ 

���
�=const

multiplying the unknown function P .

One has, as usual
P � 0 in trapped region

NOTE
Compare with Hsu Shaing Gormley Sigmar 1992 (bootstrap from �

particles) where the perturbation P is introduced as

f�1 = �I
vk

�

@f�0
@ 

+vkV
�
ki
@f�0
@w

+P

and is not multiplied by the neoclassical factor, as it is above. Then the
expansion for the separation of variables is

P (�;w;  ) =
X
j=1;2;3

 1X
n=1

�n (�;  ) Vnj (w; )

!
Aj (w; )

We conclude that, in the treatment of bootstrap, what introduces (formally)
the forces Aj in the expression of P is the fact that it is separated from the
neoclassical correction factor.
END

Returning, the solubility condition for the equation

vkrk

�
f 1 +

I



vk
@f0
@ 

����
�=const

�
= C

�
f 1
�

is, after dividing by vk , multiplying with B (= B0
h
) and averaging over the

surface (since this removes the left hand side, being the annihilator and
exploits the periodicity) See Rutherford1970�

B

vk
C
�
f 1
��
= 0
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The average hi will lead to periodicity after �rst multiplication by B. We
have

B�j rk (:::) = C

but

dlk = dl�
B�

BT

= rd�
B�

BT

= R

�
rB�

RBT

�
d� = qR d�

then
d

dlk
=

1

qR

d

d�

rk =
@

@lk
=

1

qR

@

@�
and

B =
B0
h

so that

Brk ()!
B0
h

1
rBT
RB�

R

@

@�
() = B�

@

r@�
()

Now, we have to recall the de�nition of the average operation

hAi =

I
d�

B�r�A (�)I
d�

B�r�

=

I
rd�
B�
A (�)I
rd�
B�

=

1
b(r)

I
rd� h A (�)

1
b(r)

I
rd� h

and 

Brk ()

�
=

�
B�

@

r@�
()

�

=

I
rd� h B�

@
r@�
()I

rd� h

=

b (r)

I
rd� h 1

h
@
r@�
()I

rd� h

=
b (r)I
rd� h

()�=2��=0

= 0 for periodic

This is the reason for which we must multiply (:::) with B before taking
the surface average, if we intend to exploit poloidal periodicity.
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In detail, the periodicity constraint
D
B
vk
C
�
f 1
�E
= 0 consists of two terms

v3b

�
@f0
@ 

����
�=const

�
@

@�
�

�
1� h�i @P

@�

�
(this part is pitch angle)

=
@

@v

��
v3 + v3c

�
v
@f0
@ 

����
�=const

�
1� @ h�i

@�
P

�� �
this part is drag

�
Solution is obtained by separation of the dependence on � and on v,

P ( ; v; �) =
X
n=1

�n ( ; �) Vn ( ; v)

with still dependence on radial coordinate  .
NOTE that at Cordey NBI it is f0 =

X
an (v)Cn (�). END.

The solution for P is based on an expansion in the parameter

� bounce
� s

� 1

which means fast bouncing and rare collisions.

The limiting cases

� drag only solution

vb ! 0

Pdrag =
1
@h�i
@�

� pitch-angle-only solution

@

@�
Ppitch�ang =

1

h�i

The functions �n ( ; v) are eigenfunctions of

@

@�
� h�i @

@�
�n = �n

@ h�i
@�

�n

with
�n � eigenvalues
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NOTE
in the paper of NBI in mirrors Hinton Rosenbluth �nd the equation

@G

@�
� 1

I2 (�)

@

@�

�
I1 (�) �

@G

@�

�
= 0

where

I1 (�) =

Z st

0

ds
�

B

I2 (�) =

Z st

0

ds
1

�

and the "time" variable is

� =
2

3

mi

mfast

ln

�
1 + u�3

1 + u�30

�
Also note that in RABBIT there is a new parameter

� (v0; v) =
� s
3
ln
v03 + v3c
v3 + v3c

which plays the role of time.
END

The conditions

�n (� = 0) = 1 deep passing (v2? = 0)

�n (� = �c) = 0 the trapped-passing separatrix

Limiting behavior

� ! 0 all velocity is parallel

means h�i ! 1 or vk � v

and
@ h�i
@�

! �1
2

The equation has a regular singular point at � = 0 (purely passing, v2? = 0).
Here the equation becomes Bessel of zeroth order. Taking the derivations in
LHS in the equation one �nds the term of the second derivative with respect
to � multiplied by �, like

�
@2

@�2
+ :::

and this means a singularity at � = 0.
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At the separatrix passing-trapped

� ! �c = 1� " =
B0
Bmax

remember that

B0 = min (B) the �eld at the farthest point

Bmax = max (B) the �eld at the point nearest to axis

we have

h�i ! �boundary =
1

�

(p
2" (1� ") + (1 + ") arcsin

"r
2"

1 + "

#)
The derivative

@

@�
h�i = �1

2

�
1

h�

�
(which explains why @

@�
h�i = �1

2
at the limit � ! 1, highly circulating

vk ! v)
@

@�
h�i is logarithmically singular at �c

See above for Cordey, where �Cordeyt =
p
2".

NOTE
Return to Cordey trapped electron e¤ect on NBI
The de�nitions

B = B0
1� " cos �

1� "
B0 � magnetic �eld at the farthest point, R0 + r; � = 0

� =

r
1� v2?

v2
B0
B

this is NOT
vk
v

The combination occurs
q

�v
�
��vk��
�v

in the pitch angle part of the operator of collision

1

� s
�
B0
B

v3c
v3

��vk��
�v

@

@�

(�
1� �2

� ��vk��
�v

@

@�
f

)
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Then Dvk
v

E
=

1

2�
p
B0

I
d�

q
�2B � (B �B0)

for passing electrons

and Dvk
v

E
=

1

2�
p
B0

Z B

A

d�

q
�2B � (B �B0)

for trapped electrons

In these formulas the dependence on � enters through B. ThenDvk
v

Ecirc
=

2�

�
E

�
2"

�2

�
for passing electrons

�2 > 2"

and Dvk
v

Etrap
=

2
p
2"

�

�
E

�
�2

2"

�
�
�
1� �2

2"

�
K

�
�2

2"

��
for trapped electrons

�2 < 2"

and �
v

vk

�
=

2

�
K

�
2"

�2

�
circulating ions

�2 > 2"

�
v

vk

�
=

2

��bound
K

�
�2

2"

�
trapped ions

�2 < 2"

END of memories from Cordey NBI

The equation for �n (�) is Sturm Liouville. The eigenvalues can be ob-
tained from

�n =

R �c
0
d� � h�i

�
@�n
@�

�2
�
R �c
0
d� @h�i

@�
(�n)

2

92



using trial functions.

Now we return to the equation for P , and introduce the assumed expan-
sion with separation of � and v functions.
For the functions �n (�) : they are a set of orthogonal functionsZ �c

0

d� �n�m
@ h�i
@�

= �m;n

Then the equation for P is multiplied by �n (�) and integrated on the
interval

[0; �c]

(circulating, where P 6= 0)

to obtain and equation for the other function Vn

@

@v

�
v

�
v3 + v3c
v3b

�
(�n � Vn)

@f0
@ 

����
�=const

�
= (�n � �nVn)

@f0
@ 

����
�=const

NOTE
The equation is

v3b

�
@f0
@ 

����
�=const

�
@

@�
�

�
1� h�i @P

@�

�
(this part is pitch angle)

=
@

@v

��
v3 + v3c

�
v
@f0
@ 

����
�=const

�
1� @ h�i

@�
P

�� �
this part is drag

�
END

With the conditions

Vn ( ; v > v0) = 0

no fast ion has velocity higher than v0
(no velocity di¤usion)

all velocities are smaller than the one at the birth.
Here is the de�nition of �n, it is Vn ( ; v0) calculated at the birth velocity

v0,

Vn ( ; v0) = �n �
R �c
0
d� �nR �c

0
d� @h�i

@�
�2n

the jump condition at v0
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The solution for the functions Vn is

Vn = �n

241� (�n � 1) v3b

(v3c + v3) v @f0
@ 

���
�=const

�
Z v0

v

du

�
v3 (v3c + u3)

u3 (v3c + v3)

��n v3b
3v3c @f0

@ 

����
�(u)

35
When p

"� 1

approximations are possible and lead to the Legendre functions of �.

The parameters

v0
vc
� controls the ELECTRON drag e¤ect

where vc � critical velocity separating transfer of energy from fast ions to
electrons from transfer to background ions,

v3b
v3c
� controls the pitch angle scattering

The neoclassical �ux is driven by forces

A1 =
@

@ 
ln (S� s)

A2 =
@

@ 
ln
�
v3c
�

which are gradients of functions containing plasma parameters with space
localization.

Perturbation theory for
p
"� 1

The new variable

� =

r
1� �

�c

=

s
1� v2?

v2
h

1

1� "
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where

� =
v2?
v2
h

�c = 1� "

= boundary trapped/passing

Then

h�i =
Dvk
v

E
=

2

�

p
�2 + 2"E

�
2 (1 + �2) "

�2 + 2"

�
+O (")

Compare

2 (1 + �2) "

�2 + 2"
=

2"
�
�
�c

�
1� �

�c
+ 2"

In Cordey the result of the � integration for passing has the argument

2

�
1

�2
� 1
�

"

1� "

which seems to be approximated to

2

�
1

�2
� 1
�

"

1� "
� 2"

�2

but at Cordey �2 =
v2?
v2
B0
B

14 Attenuation of the beam and distribution
of new ions Rabbit

The paper RABBIT NF 58 (2018) 082032.

14.1 The fast-ion birth rate is the attenuation of the
neutral beam

beam emission forward model BESFM.
- reaction of neutral of the beam with fast ions of the plasma, with com-

parable velocities
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- reaction of neutral of the beam with the background ions, with largely
di¤erent velocities

Comparisons:

� center-line attenuation according to beam emission forward model ;

� a Monte Carlo calculation of the attenuation

Result of this model of attenuation: the �ux � of neutrals still in the
beam, along the thin center-line of the NBI source in units of 1=s.

The shine-through power of the beam, at the position where it leaves the
plasma volume:

P
(i)
shine = �(i) (1)E(i)

where E(i) = energy of the neutrals

i � label of the beams and of energies

summation over i

14.2 The fast ion birth rate

The fast-ion birth rate or the deposition rate can be calculated, in 1=s, by
taking the derivative of the �uxes along the line. In discrete form

eSline�l + �l
2

�
= � (l +�l)� � (l)

The source rate is

S =
eSline
�V

(divied to the volume of the mesh)�
part

m3s

�

The need to consider the poloidal spreading of the beam pro�le (not only
the pencil-type, center-line).
Variable

�tor =

s
 

 n
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and enlargement in the poloidal plane

r (�) = �
rb
�b

Assume Gaussian broadening, with �, of the beam

eS (�i) = eSline (lb) � w (�i)
s

where

w (�i) =
1

2

�
erf

h2up
2�
� erf h1up

2�

�
+
1

2

�
erf

h2lp
2�
� erf h1lp

2�

�
u; l � upper / lower, relative to the

intersection of beam center-line

with the transversal to it in �i

Next, � of the assumed Gaussian enlargement is corrected for the elon-
gation.

14.3 The Fokker-Planck equation

Assumption

thermal electron velocity vth;e
�

fast ion velocity (ion beam ions)

�
thermal ion velocity vth;i

The equation has in the LHS here, collisional e¤ects

1

� s

1

v2
@

@v

��
v3 + v3c

�
f
�
(drag, friction, slowing down, drift)

+
1

� s
�
v3c
v3

@

@�

�
1� �2

� @f
@�

�
pitch angle scattering

di¤usion, because second deriv. to v

�
+
1

� s

1

v2
@

@v

��
Te

mfast�ions
v2 +

Ti
mfast�ions

v3c
v

�
@f

@v

�
(di¤usion)

=
@f

@t
� �source
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where
� � source of ions

and the Spitzer time

� s = 6:32� 108
Afast�ions

Z2fast�ions ln �e

[Te (eV )]
3=2

ne (cm�3)
[s]

The Critical velocity

vc = 5:33� 104
p
Te (eV )

�
Z2i
Ai

�1=3 hm
s

i
The other parameters

� =
1

2

hZ2i i
Afast�ionsD

Z2i
Ai

E
�
Z2i
Ai

�
=

X
ion�species i

ni
Z2i
Ai
ln �i

ne ln �e



Z2i
�
=

X
ion�species i

niZ
2
i ln �i

ne ln �e

with

Ze = �1

Ae =
1

1836:1

Next step: calculate the Coulombian logarithm of the collision between
fast-ions and the bulk ions.

For
vc � v

the collisions with ions dominate.
For

v � vc

the collisions with the electrons dominate.
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14.4 The source

It is

�source =
S

2�v
� (v � v0)K (�)

This means to assume that the injection is monoenergetic with velocity v0.
The Source is only in velocity space.

14.5 To steady state solution of the Fokker-Planck equa-
tion

The remark

the Legendre polynomials

are eigenfunctions of the operator

of pitch-angle scattering

(see Cordey. he takes limiting values for some averages, deep trapped and
deep passing.
More correct Hsu Catto Sigmar)

The expansion

f (v; �) =
1

2�
S

� s
v3 + v3c

1X
l=0

�
l +

1

2

�
ul(l+1) Pl (�) Kl H (v � v0)

where

Kl =

Z
K (�)Pl (�) d�

u =

�
v30 + v3c
v3 + v3c

v3

v3c

��
3

this is the function of the velocity v

H � Heaviside function

The solution to the Fokker Planck equation will be used for velocity space
integrations to determine various quantities.
Volume

d3v = 2�v2dv d�
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The fast ion density

nfi =

Z v0

0

Z 1

�1
2�v2dvd� f

= S� s
1

3
ln

�
v30 + v3c
v3c

�
and the fast ion current Z v0

0

Z 1

�1
2�v2dvd� (v�) f

the properties of the Legendre polynomialsZ +1

�1
Pn (�)Pm (�) d� =

2

2n+ 1
�nm

and Z
d� =

Z
P0 (�) d�

since P0 (�) = 1

14.6 The orbit average of the source term

We should include the exact particle orbit. But this is impossible.
One way to do that

� the source is represented by a set of markers

� for each marker the exact orbit is calculated

� during each step a Monte Carlo collision operator is applied which
changes the velocity vector

Why is necessary: the ion after its birth moves (due to the neoclassi-
cal drift) across "several" magnetic surfaces and this means that there are
changes in its pitch angle variable, vk=v since B is changing along.
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14.7 The time-dependent solution of the Fokker-Planck
equation

The solution

f (v; �; t) = � s
1

v3 + v3c

1X
l=0

�
l +

1

2

��
v3

v3 + v3c

� l
l+1

�
3

Pl (�)

�
Z 1

v

v02dv0 Sl

�
v0; t� � s

3
ln
v03 + v3c
v3 + v3c

��
v03 + v3c
v03

� l
l+1

�
3

where Sl is the projection of S on the l�th polynomial.
A new parameter arises

� (v0; v) =
� s
3
ln
v03 + v3c
v3 + v3c

At each time step

Sl (v; t) = S
Kl

2�v2
� (v � v0) �

�
t� t0
�t

�

The solution

f (v; �; t) =
1

2�
S

� s
v3 + v3c

1X
l=0

�
l +

1

2

��
v3

v3 + v3c

� l
l+1

�
3

KlPl (�)

��
�
t� t0 �

� s
3
ln
v30 + v3c
v3 + v3c

�
�
�
v30 + v3c
v30

� l
l+1

�
3

it is written

f (v; �; t) = fss (v; �)

��
�
t� t0 �

� s
3
ln
v30 + v3c
v3 + v3c

�
��t
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15 Heating power

The formula

Ptotal = �
Z
d3v

mfast�ionsv
2

2
Csd (f)

where the collision is the divergence of a �ux in the space of velocity

C (f) = �r � �c

�c = � 1
� s

v3 + v3c
v2

f bev
= � 1

� s

�
1 +

v3c
v3

�
f (vbev)

16 Toroidal momentum input by NBI (Rosenbluth
Hinton)

Also in polarization.tex.

The equation for the ion momentum

mini

�
@u

@t
+ (u �r)u

�
= �r (pe + pi)�r ��i

+j�B
+F

The force is the sum of the collisional momentum transfer from fast ions to
(1) electrons and (2) thermal ions.
We take the toroidal projection by multiplying with

Rr'�

and average over surface

mini
@

@t
hu'Ri = �hRbe' �r ��ii

+ hj �r i
+ hRbe' � Fi

NOTE
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that in Honda it is multiplied by R2r'� because the radial derivation
is made with respect to  instead of r.
END

The average over surface is made with the formula

hAi =

I
d�

B�r�AI
d�

B�r�

The magnetic �eld

B =
I ( )

R
be' + 1

R
be' �r 

RH explain that the surface average of toroidal projection of the convec-
tive term is zero

hRbe' � (u �r)ui = 0
It is referenced Hirshman1978.

The current.
The Maxwell equation for the rotational of the magnetic �eld, projected

onto the direction which is perpendicular to the surface

h(r�B) �r i = 0

0 =

��
�0
�
j+ jfast

�
+
1

c2
@E

@t

�
�r 

�
The term with time variation of the electric �eld is

E �r � u'RB
2
�

which comes from (E+ v �B)r = 0, and the dielectric constant (note
that it is neoclassic Robertson Hinton) is very high

1 +
c2

B2
�= (nimi)

� 1

the term with E is negligible.
Then

hj �r i = �


jfast �r 

�
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This is the equation expressing the fact that the radial current from the
expansion of the orbits of the fast ions induces an opposite current of the
thermal ions, as response.

The conservation of momentum in collisions

Fe�fast + Fion�fast = � (Ffast�e + Ffast�i)

The collisional force on the fast ions will be used to calculate the collisional
force on the thermal ions.

Returning to the surface average of the toroidal projection of the momen-
tum equation, one can separate the toroidal torque

T' = hj �r i+ hRbe' � (Fe�fast + Fi�fast)i
= �



jfast �r 

�
� hRbe' � (Ffast�e + Ffast�i)i

This is approximated as

T' = �


jfast �r 

�
� I

�
1

B

�
F fast�e
k + F fast�i

k

��

The kinetic equation for the fast ions.

@f

@t
+
�
vkbn+ vD� �rf = Cfast (f) + Sfast

where

vD = �vkbn�r� vk

fast

�
Other velocity variables

� =
vk
v
=
p
1� �B

w =
v2

2
� = �w

The collision operator for the fast ions

Cfast (f) = Cfast�e (f) + Cfast�i (f)

Cfast�e (f) = �s
1

v2
@

@v

�
v3f
�
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This is the slowing down part of the collisions, the fast ions are loosing
momentum to electrons.

Cfast�i (f) = �s
2mi

mfast

v3c
1

v3
�

B

@

@�

�
��
@f

@�

�

�s =
1

� e

me

mfast

Z2fast

= rate of slowing down of the fast ions

The electron collision time

1

� s
=

�
16
p
�

3

�
e4

m2
e

ln �
ne
v3th;e

The critical velocity

vc = vth;e

�
3
p
�

4

me

mi

�1=3
The slowing down on the thermal ions is neglected.
With the thermal ions there is pitch angle scattering.

The source of fast ions
It is a source of momentum

dM'

dt
=

Z
d3v be' �mfastv R Sfast

Sfast =
�
nfast ( ; �; t)

I
d�

2�
� (v � v0)

=
�
nfast ( ; �; t)

j�0j
B

���0 � (�� �0)
� (v � v0)

�v20

�
nfast � birth rate per unit volume�

ions
time� volume

�

j�0j =
��vk0��
v0

=
���p1� �0B

���
�0; v0; �0 � birth values
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Injection of new ions into trapped orbits on a magnetic surface

�0Bmax > 1

The ions that are generated close to the magnetic axis are NOT trapped.
They are a source of momentum as

dM'

dt
= mfast

I

B

�
nfastvk0

The parameter

slowing down rate
frequency of bounce

=
time of bounce

time of slowing down
� 1

The bounce motion is much faster than the time of slowing down.
Other parameter

guiding center drift frequency
bounce frequency

=
vD=Lfast
vth= (qR)

� 1

The bounce motion is much faster than the drift motion.

Series
f = f�1 + f0 + f1 + :::

The �rst equation

bn �rf�1 = 0

rkf�1 = 0

The next order

vkbn �rf0 = �vD �r @f�1
@ 

+ Cfast f�1 + Sfast �
@f�1
@t

This equation is now bounce-averaged

A =
1

T

I
d�

vkbn �r�A
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T =

I
d�

vkbn �r�
where bn �r� = rk� =

d�

dlk
=
dl�
dlk

d�

dl�
=
B�

B

1

r

By this operation the �rst term disappears

@f�1
@t

= �(vD �r )
@f�1
@ 

+Cfast f�1

+Sfast

The function f�1 is factorized with respect to the bounce average since it
does not depend on � and �.

The bounce average of the drift-convective deviation should use

vD �r = I vkbn �r� @

@�

�vk



�
the bounce average is zero

vD �r = 0
The equation is then reduced to the terms

@f�1
@t

= Cfast f�1 + Sfast

where

Sfast =

R �2
�1

d�
B�r�

�
nfastR �2

�1

d�
j�0jbn�r�

�� (�� �0)
� (v � v0)

2�v20

The equation bounce-averaged is now used in the original one to replace
@f�1=@t,

vkbn �rf0 = �vD �r 
@f�1
@ 

+ Cfast f�1 �
@f�1
@t

= �vD �r 
@f�1
@ 

+Cfast f�1 � Cfast f�1

+Sfast � Sfast
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