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Abstract
We review the most common aspects of generation and effects of

the plasma rotation in tokamak.
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3.1 Basic equations in the comoving frame

Toroidal momentum transport is NOT purely diffusive.

Standard gyro-kinetic ordering

E ×B velocity

is of the same order as

v∗ diamagnetic velocity

For toroidal rotation,
vtor ∼ vth ∼ cs

Spatial scales are much larger than ρs. Therefore drift-kinetic theory is
good.
Spatial scales include ρs, then gyro-kinetic theory.

Equations.
The variables are (x,v) and there is a differential one-form with the

schematic structure
pµdx

µ = p · dx− E dt

using generalized momentum mv + ZeA and the energy, we have explicitly

γ = (mv + ZeA) · dx−
(
Zeφ+

1

2
mv2

)
dt

Consider toroidal rotation

Ω = (∇R×∇ϕ) RΩ

along the main axis of the torus, ∇R = êR, ∇ϕ = 1
R

êϕ, êR × êϕ = êZ (Z
is here vertical, parallel with the main axis of the torus). There is a rigid
toroidal rotation

u0 = Ω× x

= R2Ω ∇ϕ

It is adopted as referential the comoving frame with rigid rotation with
constant Ω. In this comoving frame there is variation of the rotation frequen-
cies for magnetic surfaces near the surface where there is no relative rotation.
Distances are also affected by the relative motion on neighbor surfaces.

v→ v + u0
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dx

dt
→ dx

dt
+ u0

dx→dx + u0dt

E = −∇φ
→ E + u0 ×B

The magnetic field is unchanged.
The magnetic potential is

A= ∇ g (R,ψ)×∇ϕ
+ψ∇ϕ

A · u0 = ψΩ

The electric potential
φ→ φ+ A · u0

Then to retain, for the new variables

x ≡ space variable in co-moving feame

v ≡ velocity in co-moving frame

E ≡ electric field in the co-moving frame

A ≡ magnetic potential in co-moving frame

φ ≡ potential in co-moving frame

Returning to the differential one-form γ, we replace

dx by dx + u0dt

v by v + u0

φ by φ+ A · u0

Then

γtransf

= [ZeA +m (v + u0)] · (dx + u0dt)

−
[
Ze (φ+ A · u0) +

1

2
m (v + u0)2

]
dt
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or

[ZeA +m (v + u0)] · dx + [ZeA +m (v + u0)] · u0dt

−
[
Zeφ+ ZeA · u0 +

1

2
mv2 +mv · u0 +

1

2
mu2

0

]
dt

= [ZeA +m (v + u0)] · dx
+ZeA · u0dt+mv · u0dt+mu2

0dt

−Zeφdt− ZeA · u0dt−
1

2
mv2dt−mv · u0dt−

1

2
mu2

0dt

We note that terms with A · u0 cancel. And terms mv · u0dt occur with +
and − and are suppressed.
Collecting the remaining terms

γtransf

= [ZeA +m (v + u0)] · dx

−
(
Zeφ+

1

2
mv2 − 1

2
mu2

0

)
dt

Then the final form of the one-form is

γ = [ZeA +m (v + u0)] · dx

−
(
Zeφ+

1

2
mv2 − 1

2
mu2

0

)
dt

The Lagrangian is, after a Lie transformation

Γ =
[
ZeA +m

(
v‖n̂ + u0

)]
· dX

+µ dζ

−H dt

µ =
mv2
⊥

2B
ζ ≡ gyro-angle

where
H = Ze 〈φ〉+

1

2
mv2
‖ + µB − 1

2
mu2

0

this is the energy Ze 〈φ〉+ 1
2
m
(
v2
‖ + v2

⊥

)
− 1

2
mu2

0.
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The set of variables is (
X, ζ, v‖, µ

)
The equations, derived from the Lagrangian

dX

dt
= {X, H}

=
1

ZeB∗‖
n̂×∇H +

B∗

B∗‖

∂H

∂
(
mv‖

)
dv‖
dt

=
{
v‖, H

}
= − 1

m

B∗

B∗‖
·∇H

To obtain an equivalent equation, one starts from multiplying dX
dt
by∇H,

dX

dt
·∇H =

[
1

ZeB∗‖
n̂×∇H +

B∗

B∗‖

∂H

∂
(
mv‖

)] ·∇H
=

B∗

B∗‖

∂H

∂
(
mv‖

) ·∇H
=

1

m

B∗

B∗‖
mv‖ ·∇H

= −m v‖

(
− 1

m

B∗

B∗‖
·∇H

)
= −mv‖

dv‖
dt

then it has been derived an equivalent form

mv‖
dv‖
dt

= −dX
dt
·∇H

Now the new field

B∗ = B +
m

Ze
∇×

(
v‖n̂ + u0

)
B∗‖ = n̂ ·B∗
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We NOTE that the new field defined as B∗ has the structure B + ω. Here
ω is the vorticity associated to the velocity v‖n̂ + u0. Another form for this
definition is

Ω∗ = Ω + ω

where Ω∗ =
ZeB∗

m

Ω =
ZeB

m

NOTE
This combination (B,ω) is not usual, but it is one of the suggested asso-

ciations.
- another, is Clebsch variable

B± v

- still another is
(ω, j)

that seems compatible with the preceeding one, ∇× (B± v) = µ0j± ω.
However B and ω have in common the fact that they are differential two-

forms, i.e. fluxes. ω is a flux but j is a differential three-form. Wedge-product
with dt must be a scalar in 4D,

j ∧ dt ∼ ρ (charge density)

END

An expression for the new field B∗ separates the parallel and perpendic-
ular parts, using

n̂ and

n̂× (n̂× ...)
B∗

B∗‖
= n̂− m

Ze

1

B∗‖
n̂×

{
n̂×

[
∇×

(
v‖n̂ + u0

)]}
∇×

(
v‖n̂ + u0

)
= v‖∇× n̂

+2Ω

returning, we get

B∗

B∗‖
= n̂ +

m

Ze

1

B∗‖
v‖n̂× (n̂ ·∇) n̂

+2
m

Ze

1

B∗‖
Ω⊥
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Assuming rigid rotation

∇u2
0 = 2RΩ2∇R

Then the velocity in the comoving frame is

dX

dt
= v‖n̂

+
1

B∗‖

1

Ze/m
n̂× v2

‖ (n̂ ·∇) n̂ +
1

B∗‖

µ

Ze
n̂×∇B +

1

B∗‖
n̂×∇ 〈φ〉

+
1

B∗‖
2

1

Ze/m
Ω⊥

− 1

B∗‖

1

Ze/m
Ω2R n̂×∇R

with the components

1

B∗‖

1

Ze/m
n̂× v2

‖ (n̂ ·∇) n̂ curvature drift, vcurvature

1

B∗‖

µ

Ze
n̂×∇B grad-B drift, v∇B

1

B∗‖
n̂×∇ 〈φ〉 ExB drift, vExB

To understand the meaning of the two last terms due to rotation, one
starts from the most general equation:
when there is a force acting on the particle that gyrates in a strong mag-

netic field there will result a DRIFT of the center of gyration of the particle
in a direction that is perpendicular on the force and on the magnetic field,
i.e. ∼ F×B,

vdrift =
1

ZeB

F×B

B∗‖

Now, in the rotating reference system there is the Coriolis force

Fcor = mv‖n̂× 2Ω

and there is also a centrifugal force

Fcf = mΩ2R ∇R
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Then there will be two new components of the drift velocity

vcor =
1

ZeB

Fcor ×B

B∗‖

=
1

ZeB

(
mv‖n̂× 2Ω

)
×B

B∗‖

separately

(n̂×Ω)× n̂ = − [n̂ (Ω·n̂)−Ω (n̂ · n̂)]

= Ω− n̂ (n̂ ·Ω)

≡ Ω⊥

and
vcoriolis = 2

1

ZeB

mv‖
B∗‖

Ω⊥

vcf = − 1

Ze
mΩ2R

n̂×∇R
B∗‖

These expressions for drift velocities of various sources can be used in

dX

dt
= v‖n̂ + vcurvature + v∇B + vExB

+vcoriolis + vcf

to give a more detailed form to the parallel-energy formula

mv‖
dv‖
dt

= −dX
dt
·∇H

where
∇H = Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

leading to

mv‖
dv‖
dt

= −dX
dt
·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
= −

[
v‖n̂ + vcurvature + v∇B + vExB + vcoriolis + vcf

]
·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
Separately, few terms from the RHS

−v∇B · Ze∇ 〈φ〉 = −
(

1

B∗‖

µ

Ze
n̂×∇B

)
· Ze∇ 〈φ〉

=
−∇ 〈φ〉 × n̂

B∗‖
· µ∇B

= vExB · µ∇B
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−vcf · Ze∇ 〈φ〉 = −
(
− 1

Ze
mΩ2R

n̂×∇R
B∗‖

)
· Ze∇ 〈φ〉

= −−∇ 〈φ〉 × n̂

B∗‖
· mΩ2R ∇R

= −vExB ·mΩ2R ∇R

−vcf · µ∇B = −
(
− 1

Ze
mΩ2R

n̂×∇R
B∗‖

)
· µ∇B

= − 1

Ze

n̂× µ∇B
B∗‖

· mΩ2R ∇R

= −v∇B ·mΩ2R ∇R

These are terms that result from the product in the RHS.
Consider other terms from the expanded RHS

(v∇B + vExB) ·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
= v∇B · Ze∇ 〈φ〉 this is − vExB · µ∇B

+v∇B · µ∇B this is 0

−v∇B ·mΩ2R ∇R
+vExB · Ze∇ 〈φ〉 this is 0

+vExB · µ∇B this will cancel with the 2nd line

−vExB ·mΩ2R ∇R

This part consists of

(v∇B + vExB) ·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
= −v∇B ·mΩ2R ∇R − vExB ·mΩ2R ∇R

Continue with other terms from the product

vcf ·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
= vcf · Ze∇ 〈φ〉 this is vExB ·mΩ2R ∇R

+vcf · µ∇B this is v∇B ·mΩ2R ∇R

−vcf ·mΩ2R ∇R or −
(
− 1

Ze
mΩ2R

n̂×∇R
B∗‖

)
·mΩ2R ∇R is 0

from this part of the product we get

vcf ·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
= vExB ·mΩ2R ∇R + v∇B ·mΩ2R ∇R
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Before proceeding further we notice that the two partial calculations of the
terms in the full product lead to

(v∇B + vExB) ·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
+vcf ·

[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
= −v∇B ·mΩ2R ∇R − vExB ·mΩ2R ∇R

+vExB ·mΩ2R ∇R + v∇B ·mΩ2R ∇R
= 0

It results that the terms arising from (v∇B + vExB + vcf ) · [...] have zero
contribution to the final form.
Then we write the remaining terms as

−
(
v‖n̂ + vcurvature + v∇B + vExB + vcoriolis + vcf

)
· [...]

= −
(
v‖n̂ + vcurvature + vcoriolis

)
· [...]

This is the result

mv‖
dv‖
dt

= −
(
v‖n̂ + vcurvature + vcoriolis

)
·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
The authors underlie that the two equations for a particle motion in the

comoving frame

• the drifts

dX

dt
= v‖n̂ + vcurvature + v∇B + vExB + vcoriolis + vcf

with their explicit form, and

• the energetic expression

mv‖
dv‖
dt

= −
(
v‖n̂ + vcurvature + vcoriolis

)
·
[
Ze∇ 〈φ〉+ µ∇B −mΩ2R ∇R

]
must be used for the gyro-kinetic equations.
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3.2 Connection between the comoving frame and the
laboratory frame

In the Laboratory frame there are no Coriolis or centrifugal terms.
Then - where these two physical effects, which are easily derived in the

co-moving frame, are to be found in the Laboratory description ?
Answer: in the curvature drift

The basic equations, L ≡ laboratory frame

v‖L = u‖ + v‖

where the rigid rotation is projected on ‖ direction

u‖ =
Btor

B
RΩ

It is considered

Btor =
B0

h
then

u‖ =
B0

hB
RΩ

This is the parallel component of the rotation velocity of the frame

u0 = RΩ R∇ϕ
= RΩ êϕ

and its projection on parallel direction is

(u0)‖ = u0
Btor

B

=
Btor

B
RΩ

and
dXL

dt
= u0 +

dX

dt

Consider the curvature drift.
It is taken into account that

n̂× [(n̂ ·∇) n̂]

=
n̂×∇B

B
+

n̂×∇p
B2/µ0
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1(
ZeB∗‖
m

)v2
‖n̂× [(n̂ ·∇) n̂]

=
1(

ZeB∗‖
m

)v2
‖

[
n̂×∇B

B
+

n̂×∇p
B2/µ0

]

The last term is ∼ β and will be neglected.

NOTE
Below electric field separatrix it will be used a similar formula

n̂×∇ψ = In̂−RB êϕ

and

ui⊥ =
1

B
n̂×

(
1

nie
∇pi +∇φ

)
≈ ω

(
−n̂

I

B
+R êϕ

)
where

ω = −
(

1

nie

∂p

∂ψ
+
∂φ

∂ψ

)
The final form is

[(n̂ ·∇) n̂] · ui⊥ ≈ ω I (n̂ ·∇)

(
1

B

)
in Kim.
END

This allows to write the evolution of the parallel component of the velocity
in the laboratory frame

m
dv‖L
dt

= m

(
dv‖
dt

+
du‖
dt

)
where

u‖ =
Btor

B
RΩ

and we remember that
dv‖
dt

= − 1

m

B∗

B∗‖
·∇H

17



Then

m
dv‖L
dt

= −Ze ∇‖ 〈φL + φ〉

− 1(
ZeB∗‖
m

)v2
‖L

n̂×∇B
B

·∇ 〈φL + φ〉

−µ∇‖B

The toroidal rotation

u0 = RΩ R∇ϕ
= n̂ u‖ + vE,L

We will use the relation v‖L = u‖ + v‖, where we know dv‖L/dt.
It is also taken into account the electric drift in the L frame

vE,L =
−∇ 〈φL〉 × n̂

B

Using

u0 = vE,L + u‖n̂

= RΩ R∇ϕ

the projection of the laboratory velocity along grad-B is obtained by multiply-
ing the above equation with∇B and taking into account that∇B ·∇ϕ = 0,
then

vE,L ·∇B = −u‖ ∇‖B

The derivative of v‖ , the velocity in the moving frame

m
dv‖
dt

= −Ze∇‖ 〈φ〉

−Ze 1(
ZeB∗‖
m

) (v‖ + u‖
)

(n̂×∇ lnB) ·∇ 〈φ〉

−µ∇‖B
−m
B
u‖
(
v‖ + u‖

)
∇‖B

−m
du‖
dt

18



Now we need
du‖
dt
,

u‖ =
Btor

B
RΩ

The simple time derivative of this expression must still be corrected to
reflect the time variation of the spatial coordinates

du‖
dt

=
dXL

dt
·∇

(
Btor

B
RΩ

)
which is

du‖
dt

= −u‖
[(
v‖ + u‖

)
n̂ + vE,L + vE

]
·∇ lnB

This is the last term in the expression for
dv‖
dt
. Replacing,

m
dv‖
dt

= −Ze ∇‖ 〈φ〉

−Ze 1(
ZeB∗‖
m

) (v‖ + 2u‖
)

(n̂×∇ lnB) · 〈∇φ〉

−µ∇‖B
−mu2

‖ ∇‖ lnB

The velocity of the particle

dX

dt
= v‖n̂

+vE

+
1(

ZeB∗‖
m

) [(v2
‖ + 2v‖u‖ + u2

‖
)

+ µB
]

n̂×∇ lnB

The conclusion of coparison of the derived expressions is the possibility
to approximate the velocities as follows
The Coriolis velocity

vcoriolis =
1(

ZeB∗‖
m

) 2v‖u‖ n̂×∇ lnB

The centrifugal drift

vcentrifug =
1(

ZeB∗‖
m

) u2
‖ n̂×∇ lnB
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And an approximation for the dependence of the magnetic field magnitude

B ∼ 1

R

Approximations

Btor = B +O
(
ε2
)

=
1

R
+O

(
ε2
)

u‖ = RΩ

+O
(
ε2
)

n̂×∇ lnB = −n̂×∇ lnR

+O
(
ε2
)

Ω⊥ = −Ω n̂×∇R
+O

(
ε2
)

Now we have two different direction for the calculation of velocities
- starting from the differential one-form, then Lagrangian and equations

of motion, or
- starting from the equations of motion in the Laboratory frame and

adopting a transformation leading to the co-moving frame

Terms of Coriolis and Centrifugal drift that are present in the co-moving
frame
are recovered in
terms in the Laboratory frame

It is the curvature drift of the Laboratory frame that produces the terms
that correspond to the Coriolis and centrifugal terms.
Consider the curvature drift in the Laboratory frame

1(
ZeB∗‖
m

) v2
‖L n̂×∇ lnB
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and the connection with the velocity in the co-moving frame

v‖L = v‖ + u‖

which must be replaced above

1(
ZeB∗‖
m

) v2
‖L n̂×∇ lnB

=
1(

ZeB∗‖
m

) (
v‖ + u‖

)2
n̂×∇ lnB

=
1(

ZeB∗‖
m

) v2
‖ n̂×∇ lnB curvature drift in co-moving

+
1(

ZeB∗‖
m

) 2v‖u‖ n̂×∇ lnB Coriolis drift in co-moving

+
1(

ZeB∗‖
m

) u2
‖ n̂×∇ lnB centrifugal drift in co-moving

The results are practically the same, within the approximations men-
tioned above.

3.3 Particle in a rotating plasma

Paper centrifugal force gyrokinetic Casson.

Physical effect on ions
- The detrapping effect of the potential Φ ; This is produced by electric

field Er = (−∇Φ) · êr, and Er×Bθ ∼ vϕ that changes the state of a particle:
trapped (v‖ small) or circulating (v‖ large); accelerating the particles by
parallel electric field means to helps detrapping;
- the trapping effect of centrifugal force v2/R, since the centrifugal force

changes the perpendicular velocity and creates better situation for trapping;*
almost cancel.

* there is a drift produced by the centrifugal force

vcf =
F×B

B2
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where

Fcf = mΩ2R ∇R
= mΩ2R (−êR)

and this has a component that is radial {[(−êR)×B] · êr 6= 0}. It can modify
the trapping (Peeters).

Physical effect on electrons
The electrostatic potential Φ produces an effect of trapping for the elec-

trons.

Take

Z ≡ coordinate along the major axis of the torus

(vertical)

It is adopted a frame that rotates in toroidal direction

Ω = −Ω ∇Z
(vertical)

Plasma rotates toroidally with the angular velocity

ωϕ (ψ) = −ωϕ (ψ) ∇Z
where ψ =

r

RA

where
[RA] = m (distance)

There are these two angular velocities which are defined to be coincident
on a certain magnetic surface ψ

surface ψ

Ω = ωϕ (ψ)

Here the local plasma toroidal velocity is

utor = R Ω×∇R
∼ Btor

it has the direction of Btor
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Define Mach number

u ≡ RAΩ

vth

(
m

1/s

(m/s)

)
nondimensional

vth =

√
2Ti
mi

on the surface taken as reference

The equations (see Peeters)

mv‖
dv‖
dt

=
dX

dt

[
−Ze ∇ 〈φ+ Φ〉 − µ∇B +mΩ2R ∇R

]
dX

dt
= v‖n̂

+
1

Ze

(
mv2
‖

B
+ µ

)
n̂×∇B

B
(drift vD)

+
−∇ 〈φ+ Φ〉 × n̂

B
(electric)

+
2mv‖
ZeB

Ω⊥ Coriolis

−mΩ2R

ZeB
n̂×∇R centrifugal

where
Ω⊥ = Ω− (Ω·n̂) n̂

The equilibrium distribution if Maxwellian in velocity space

FM =
n

(2πT/m)3/2
exp

[
−

(v‖ − u‖)2

2T/m
− µB

T

]
where

u‖ =
Btor

B
[Rωϕ (ψ)−RΩ]

As the surface of reference has been defined (ωϕ
(
ψref

)
= Ω) it results

that
u‖
(
ψ = ψref

)
= 0

but it has variation for nearby surfaces (radial distance relative to ψref). This
variation with ψ leads to gradients that arise when the equilbrium distribu-
tion function is diferentiated

u′ = − R

vth

(
∂ωϕ
∂ψ

)
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The phase-space conservation of the gyrocenter distribution

F
(
X, µ, v‖

)
is expanded in

ρ∗ =
ρi
R

v‖ ∇‖FM

+

[
Ze

m

(
−∇‖ 〈Φ〉

)
− µ
m
∇‖B

+Ω2R ∇‖R
] ∂FM

∂v‖
= 0

The presence of Φ is requested by neutrality since the centrifugal force
will impose it. Φ detraps the ions contrary to the centrifugal force that tends
to trap them.
The density, s = e, i

ns (θ) = nR0,s exp

{
−Ze 〈Φ〉

Ts
+

(Ω2R2 − Ω2R2
0)

2Ts/ms

}
depends on θ

where R0,s is chosen where n (θ) = nR0,s.

The potential with veriation on large spatial scale

〈Φ〉 ≈ Φ

The neutrality condition, in the rotating frame

eΦ =
1

1
Ti

+ 1
Te

(
mi

Ti
− me

Te

)
1

2

(
Ω2R2 − Ω2R2

0

)
This is for ions+electrons.
When there are impurities neutrality is solved numerically.
One can define the "centrifugal and potential energy"

E (θ) = ZeΦ− 1

2
m
(
Ω2R2 − Ω2R2

0

)
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The gradient-length of the density is modified by the rotation.
It is measured by R/Ln.
The expression contains R0 and this is a choice. It also demends on the

radial coordinate ψ like R.
Taking the variation of the density on surface

ns (θ, ψ) = nR0,s (ψ) exp

(
−Es (θ, ψ)

Ts (ψ)

)
such that the equilibrium Maxwellian is

FM =
nR0

(2πTs/ms)
3/2

exp

[
−
(
v‖ − u‖

)2

Ts/ms

− µB

Ts
− E
Ts

]

Two choices

R0 = Raxis

R0 = RLFS

Now define
R

Ln

∣∣∣∣
R=R0

= −∂ lnn

∂ψ

∣∣∣∣
R0

then

R

LEn
(θ) = −∂ lnn

∂ψ

=
R

Ln

∣∣∣∣
R=R0

+
E
T

R

LT

+
1

T

∂E
∂ψ

For a plasma of electrons and ions

Ee
Te

=
Ei
Ti

They are simplified to (after neglecting the electron mass)

Es = − Ts
Te + Ti

mi
1

2

(
Ω2R2 − Ω2R2

0

)
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The change in the gradient density is

R

LEn
− R

Ln

∣∣∣∣
R0

=

∂Te
∂ψ

+ ∂Ti
∂ψ

(Te + Ti)
2mi

1

2

(
Ω2R2 − Ω2R2

0

)
+

1

Te + Ti
mi

1

2

[
Ω22R

∂R

∂ψ

∣∣∣∣
θ

− Ω22R0
∂R0

∂ψ

∣∣∣∣
θ

]
The "drift kinetic equation" in the presence of rotation

∂f

∂t
+
dX

dt
·∇f

−n̂ · 1

m
(µ∇B +∇E)

∂f

∂v‖
= S (source)

The source consists of the terms that comes from the advection of the equi-
librium distribution function.

S = −vE ·
(
∇nR0
nR0

− 1

T
m

1

2
Ω22R0

∂R0

∂ψ
∇ψ

+

[
v2
‖

v2
th

+
µB + E
T

− 3

2

]
∇T
T

+
Btor

B

1

T
mv‖R ∇ωϕ

)
FM

+
dX

dt
· −Ze∇ 〈φ〉

T
FM

The equation of neutrality∑
s

ZsnR0,s

[
2πB

∫
dµdv‖ J0 (k⊥ρs) f̂s

+
Zs
Ts

[Γ (bs)− 1] exp

(
−Es
Ts

)
φ̂

]
= 0

where

bs =
1

2

k2
⊥

(ZseB/ms)
2v

2
th,s

=
1

2

k2
⊥

Ω2
s

v2
th,s
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The centrifugal drift

vcf = −1

2

1

ZeB
m Ω2 2R n̂×∇R

or
−1

2

1

Ωcicl

n̂×∇
(
Ω2R2

)
the drift

vcoriolis = 2
v‖

Ωcicl

Ω⊥

4 Rotation in mirrors

The paper is rotation in mirrors Bekhtenev. It is in research, plasma,
general, rotation.
Apart gyromotion there is a drift

vE =
F×B

B2

and the angular moment

ΩE =
r× vE
r2

where
F = eE +mΩ2

E r

Isorotation law

ΩE ≈
E

B

1

r
≈ const

Centrifugal inertial force
mΩ2

E r

See also Horton mirrors.
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5 Magnetic field generation in sheared rota-
tion relative to neutrals

The paper is SelfGeneratedMagneticFieldShearedFlow
The domain is ionosphere and the paper is in biblio, ionosphere.

The equations
∂nα
∂t

+∇· (nαVα) = 0

dVα

dt
= − 1

nαmα

∇pα +
qα
mα

E +
qα
mα

Vα ×B

−ναn (Vα −Vn)

−ναβ (Vα −Vβ)

where
Vn ≡ neutral fluid velocity
α, β ≡ electrons and ions

qe = −e
qi = +e

(where e > 0)

Adding the equation (one-fluid)

nimi
dVi

dt
= −∇p+ J×B

−ni (mivin +meven) Vi

+
meνen
e

J

+ni (mivin +meven) Vn

where
J = eniVi − eneVe

ni = ne

P = pe + pi

meνei = miνie

and
nn � ni
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Consider also the Ampere’s law

∇×B = µ0J

then

nimi
dVi

dt
= −∇

(
B2

2µ0

+ p

)
+

1

µ0

(B ·∇) B

−ni (mivin +meven) (Vi −Vn) (collisional)

+
me

µ0e
νen ∇×B

(
collisional, comes from

meνen
e

J
)

The electron momentum equation is

E = − 1

nee
∇pe −Ve ×B

+
meνen
e

(Ve −Vn)

+
me

nee2
νei J

The Faraday law
∂B

∂t
= −∇× E

and one can eliminate the electron velocity using

Ve = Vi −
1

nee
J

It results

∂B

∂t
= ∇× (Vi ×B) convective

−me

e
∇×

[
ν

J

en

]
diffusion

−∇×J×B

ne
Hall

+
me

e
∇× [νen (Vi −Vn)] source

where
ν ≡ νei + νen

There are now applications.
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For a flow of neutrals that is along y direction with velocity that varies
(shear) along the x direction

Vn = Vn (x) êy

the magnetic field generated is along the z direction

B = B (x, t) êz

The problem is treated as initial value equation, with Laplace transform
on time.

Note
Neutrals are necessary.
The plasma is weakly ionized, the density of neutrals is high.
The velocity of ions and neutrals are sheared.
End

6 Rotation in tokamak

6.1 Asymptotic poloidal rotation

From Novakovskii Liu Sagdeev Rosenbluth
In solution drift equation.See below.
In a plasma with density and temperature gradients an initially Maxwellian

distribution inevitably evolves to a state with a finite RADIAL electric field.
- [Hazeltine dT/dr].
- In Novakovskii Galeev Sagdeev Hassam

vE∞ = −Vn −
3

2
VT −

Bθ

BT

U0

6.2 Inertia factor to poloidal rotation

The inertia factor for the poloidal rotation(
1 + q2Λ

) ∂VE
∂t

is discussed in
- Novakovskii Sagdeev Hassam Galeev
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- Hassam Drake (Stringer)
- Hirshman paradox ambipolarity
This subject is examined in 000_reference_plasma. The derivation of

Hassam is adopted.

6.3 Radial polarization electric current

In Novakovskii Galeev Hassam
This is

〈jr〉 = 〈nVir〉

∼
(

1 + q2 + ν̂−1/3q2
) mc2

B2

(
∂Er
∂t

)
The current is of ions.
About the complicated problem of saturation.
We inject without stop new fast ions, NBI.
The polarization should increase.
The return current should also increase.
There is a parallel current that arises from the zero-divergence of the

current.
The parallel current is saturated by collisions.

In Honda it is mentioned that some parallel dissipative mechanims can
saturate the perpendicular electric field.

6.4 From Kim Burrell.

- NBI counter injection (counter-current)
- first orbit ion loss, a radial outward current (massive loss, approx half

of fast ions, ∼ 40%)
- thermal ions respond by an inward current (to mainatin neutrality)

Jorbitr ; return current. The return current is the current of all plasma, while
the loss of fast ions is only of the small population of fast ions.
- the return current (involving the bulk plasma) AND B create a torque

Jr ×B

applied on plasma; the toroidal part of the torque Jorbitr Bθ is directed counter-
current (as is NBI)
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- rotation is generated by this torque: poloidal vθ and toroidal vϕ;
- the rotation produces the radial electric field Er; this is because there

is NO equilibrium balance between the diamagnetic and the poloidal and
toroidal flows. An electric field is necessary to ensure the force balance.

They obtain

Er =
1

niZie

(
dPi
dr

)
− UiθBϕ + UiϕBθ

At counter-NBI (where the loss is 38% of NBI ions)

• the pressure 1
niZie

(
dPi
dr

)
[diamagnetic] and

• the toroidal rotation UiϕBθ

terms are negative globally.
For this reason the electric field is negative Er < 0.
At the edge the pressure term, negative, makes Er strongly negative.

Regarding the toroidal torque, for counter-NBI.
It has two components: one is Jr×B and the other is the torque created

by the fast NBI ions which remain inside plasma.

The equation for the toroidal momentum

∂

∂t
(Uϕni)−

1

r

∂

∂r

[
r χni

(
∂Uϕ
∂r

)]
= F

where
χ ≡ coeff. of radial transport of the momentum

F = FNBI + Fcx

Normalization using reference values

n0 = 1019
(
m−3

)
Uϕ0 = 10 (km/s)

t0 = 100 (ms)

a = 0.6 (m)

χ0 =
a2

t0
= 3.6

(
m2

s

)
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F0 =
min0Uϕ0

t0
= 3.34× 10−3

(
N

m3

)
with mi = 1.67× 10−27 (kg)× 2 (Deuteriu) = 3.34× 10−27 (kg).
The force resulting from charge exchange-induced change of the toroidal

momentum (loss)

Fcx = −niU0 νcx
t0

(?)

νcx = Nneut 〈σ v〉cx

Nneut
0 ≡ density of neutrals

= 1016

(
1

m3

)

In Stringer1969 driftwithradialelectricfield
See 025_stringer.
The statement that the static inertia is involved.
This corresponds to the treatment of Rosenbluth hose (see below for

detailes discussion) where

hB· [(v ·∇) v] = −c
2
s

ρ
hB ·∇ρ

shows that the static inertia of plasma (ions) is balanced by parallel gradient
of pressure (isothermal).
[for a similar hose-like situation,Robertson transient Alfven inAlfven]
It appears the factor ρeff .

Hinton Wong rotation. ρeff .

6.5 Burrell changes in electric field at L to H transition

The paper is in 1994 parametricdependenceelectric field edge.

And poloidal rotation near the edge in H mode Hinton. For
ρeff . Squeezing effect. Two treatments: heuristic and kinetic (distribution
function).
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6.6 The frequency of poloidal rotation Shaing Hazel-
tine

This paper Shaing Hazeltine effect of orbit squeezing.
The kinetic equation(

v‖n̂ + VE

)
·∇θ ∂f1

∂θ
+ vD ·∇ψ

∂f1

∂ψ

+vD ·∇ψ
∂f0

∂ψ

= C [f1]

Estimations

∂f1

∂ψ
∼ f1

ψp
ψp ≡ typical width of a particle orbit

The radial advection vD ·∇ψ of the radial gradient of the distribution func-
tion ∂f0/∂ψ ,

∂f0

∂ψ
∼ f0

ψe

On the other hand the order of magnitude

f1 ∼
ψp
ψe
f0

Then
∂f1

∂ψ
∼ ∂f0

∂ψ

Conclusion: f1 has sharp variation in the narrow radial zone.

The frequency of rotation

ω =
(
v‖n̂ + VE

)
·∇θ

=

(
v‖ + I

1

B

dφ

dψ

)
n̂ ·∇θ

here I = RBT , I
B
dφ
dψ
∼ RBT

B
1
|∇ψ|

dφ
dr
∼ RBT

B
1

RBθ

dφ
dr

= BT
Bθ

(−Er
B

)
is the parallel

projection of the poloidal velocity of electric origin. Then V‖ = v‖ + BT
Bθ
VE

and ∇‖θ = 1
qR

∂
∂θ
θ = 1

qR
.
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[the following part is similar to poloidal rotation H mode Hinton].
The invariants of guiding center

E =
1

2
v2
‖ + µB (θ) +

e

M
φ (θ)

P = ψ − I
v‖
Ωc

(generalized momentum)

One has
R2v ·∇ϕ ≈ I

v‖
B

for small flow velocities.

ω = − I

Ωc

(n̂ ·∇θ)
∂P
∂ψ

∂P
∂E

The potential in the energy is expanded

φ = φ0 (ψ0) +
dφ

dψ

∣∣∣∣
ψ0

(ψ − ψ0) +
d2φ

dψ2

∣∣∣∣
ψ0

(ψ − ψ0)2

The squeezing factor is generated by the radial variation of the radial
electric field.
This means that for a trapped particle a branch (half) of banana travels

in a radial electric field and the other half in a different radial electric field.

The reference point is adopted

θ0 = π

Then the parallel velocity in that point is a reference too

v‖0 = v‖ (ψ0, θ0)

=

√
2
[
E − µB (ψ0, θ0)− e

m
φ (ψ0)

]
For large |S|,

|S| > 1

the trapped particles reside on the high field side of the torus (smaller major
radius).
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Then the choice
θ0 = π

The expression

S = 1 +
I2

ΩcB0

∂2φ

∂ψ2

Now define
h0 = h (ψ0, θ0)

B =
B0

h (ψ, θ)

VE0 =
I

B0

dφ

dψ

∣∣∣∣
0

The reference surface is
ψ0

during the motion the particle is at

ψ (θ, P, E, µ)

and the particle orbit has a departure

∆ψ = ψ (θ;P,E, µ)− ψ0

Then

ω = (n̂ ·∇θ)
[(

h0

h

)
v‖0 + hVE0 +

(
1

h
+ S (h− 1)

)(
Ω0

I

)
∆ψ

]
The variable ∆ψ is replaced here from the equation that shows the de-

parture of the particle’s ψ from the reference surface ψ0.
Then

ω = (n̂ ·∇θ)
{(

hVE0 +
h0

h
v‖0

)2

+
[
1 + h2 (S − 1)

](h0

h
− 1

)
×
[
2

(
E − eφ0

M

)(
h0

h
− 1

)
− 2µB0

h

]}1/2

We have

ω = ±ω̂

√
1− κ sin2

(
θ

2

)
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ω̂ = |n̂ ·∇θ|
√(

VE0 + v‖0
)2

+ 4Sε
(
v2
‖0 + µB0

)
κ = 4Sε

v2
‖0 + µB0(

VE0 + v‖0
)2

+ 4Sε
(
v2
‖0 + µB0

)
The limit trapped/passing

κ = 1

The limit

κ → ∞ means ω̂ → 0

deep trapped

Additional expansion parameter

νi
Sε

vth,i
Rq

√
εS
� 1

The collision operator (pitch angle)

C [f ] = νdefl
v‖
B

∂

∂µ
µv‖

∂f

∂µ

for the independent variables
(E, µ)

The next steps

• it is changed
(E, µ)→ (E,ω)

• it is assumed that √
ε |S| � 1

• neglect ∂f/∂ω;

• neglect a term for
Mp < 1
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then one obtains

C [f ] = νdelf
v2

R2q2

(
∂2f

∂ω2

)
[good for small fraction of trapped particles]

Change
(E,ω)→ (E, κ)

and obtain

C [f ] = νdelf
v2

R2q2

2κω

ω̂2

∂

∂κ

(
2κω

ω̂2

∂f

∂κ

)

6.7 Rotation and bootstrap Peeters review

From the text bootstrap.tex.

The fluid formulation.
In parallel projection, the full momentum conservation is

nmiB·
dui
dt

= B· (−∇p) + B· (−∇·π)

+en B · E + B · F

This is first adapted for circulating ions.
Then it is assumed that the build-up of a parallel velocity of circulating

ions by the moment transferred from trapped ions can be represented as
anisotropy of the pressure tensor, projected on the magnetic field

nmiB·
dui
dt

= B· (−∇·π)

Here, therefore one replaces the LHS with the formula above

nmi

∂ucirci‖

∂t
= mi

νii
ε
ε3/2 Ti

eBθ

dn

dr
−
√
ενiimin u

circ
i‖

and obtain

B miνii
√
ε

(
Ti
eBθ

dn

dr
− n ucirci‖

)
= −B ·∇·π

B miνii
√
ε n

(
Ti
eBθ

d

dr
lnn− ucirci‖

)
= −B ·∇·π
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The first term in the brackets is the diamagnetic velocity of ions

Ti
eBθ

d

dr
lnn− ucirci‖

=
Btor

Bθ

(−vi,dia)− ucirci‖

since

vi,dia = − Ti
eBtor

d

dr
lnn

From these two terms it can be formed the poloidal velocity of ions. First
one multiplies [

Ti
eBθ

d

dr
lnn− ucirci‖

]
× Bθ

B

=
Btor

B
× Ti
eBtor

d

dr
lnn− ucirci‖

Bθ

B

=
Btor

B
× (−vi,dia)− ucirci,pol

= −Vpol

this is the poloidal velocity of the circulating ions. The ratio Btor/B close to
1 corrects the diamagnetic velocity which is perpendicular on the magnetic
line to be projected on the poloidal direction.

Vpol = (vi,dia)pol + ucirci,pol

Now the paranthesis
(

Ti
eBθ

d
dr

lnn− ucirci‖

)
is replaced by(

Ti
eBθ

d

dr
lnn− ucirci‖

)
=

B

Bθ

(−Vpol)

and the momentum equation is written

B miνii
√
ε n

(
Ti
eBθ

d

dr
lnn− ucirci‖

)
= −B ·∇·π

B2

Bθ

miνii
√
εn Vpol = B ·∇·π

The factors miνii
√
εn are dynamical viscosity, µi

µiB
2Vpol
Bθ

= B ·∇·π

39



Returning

nmiB·
ducirci

dt
= −µiB2Vpol

Bθ

The interpretation given by Peeters
"The density gradient leads to
a diamagnetic velocity in the surface which has a poloidal component. In

this direction,
however, the magnetic field strength changes which leads to a viscous force

which damps the
poloidal rotation through a build-up of the parallel velocity until the poloidal

component of
this velocity cancels the poloidal component of the diamagnetic velocity.

The total velocity
is then in the direction of the symmetry of the system [toroidal, axisym-

metric] and, therefore, no longer ‘feels’the
variation of the field strength. The viscous force that appears in the fluid

theory can be traced
back to the friction between trapped and passing. By definition, a trapped

particle cannot rotate
in the poloidal direction"

Comment

• there is the diamagnetic flow

• the diamagnetic flow is perpendicular ⊥ on the magnetic field line

• then there is a poloidal θ projection of the diamagnetic flow

• this poloidal projection (of the diamagnetic flow) is heavily damped by
TTMP

• the process of damping of the poloidal projection of the diamagnetic
flow necessarily induce a parallel flow

• this parallel flow also has a poloidal projection

• the poloidal projection of the parallel flow and the poloidal projection
of the diamagnetic flow cancel each other

• there will not be any poloidal rotation.

• all rotation is toroidal
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Note that the gradient of temperature is not taken into account. And the
possibility of a drive for the poloidal rotation, e.g. the polarization separation
of charge.

See Stringer for the necessity of the parallel flow.

7 Toroidal rotation

7.1 Introduction toroidal rotation

State of the problem. Toroidal rotation is

L-mode counter-current
H-mode co-current

In some situations (Rice PoP2012) the increase in the density leads at a
threshold to the reversal of the toroidal rotation from co- to counter- current,
but with improvement (!) in confinement.

From poloidal rotation H mode Hinton
"well after the L to H transition, the main ions rotate
in the ion diamagnetic direction, at a speed somewhat less
than the ion diamagnetic speed. This is in the opposite
direction to the measured impurity ion poloidal rotation. It is in the same

direction as the main ion poloidal rotation predicted by neoclassical theory in
the banana
regime [gradient of temperature, Hinton], but much larger for the exper-

imental parameters. "

7.2 Wong Burrell 1982 toroidal rotation

The text and equations are commented in drift kinetic equation.tex.

The parameter of neoclassical transport

δ ≡ ρθ
R

The parallel plasma flow is nearly the same as the toroidal rotation
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The parallel plasma flow is order

δ

i.e. first order relative to the ion thermal velocity

vplasma‖ ∼ vplasmatoroidal

∼ δ × vth,i

When there is NBI, the plasma toroidal flow velocity is much higher, a
high fraction of vth,i.

For heavy impurities, without NBI, the velocity is order δ from vth,i,

vheavy−impurity‖ ∼ δ × vth,i

How the toroidicity occurs in neoclassical drift theory

• the mirror force

• the curvature and µ∇B neoclassical particle drift

both must be included in the drift wave equations.
One obtains a modified Maxwellian.
If we want it to be steady even when the magnetic pumping acts to damp

the rotation, one has to impose a certain ordering to the radial electric field

Er ∼ −
dφ

dr

(
dφ
dr

)
Bθ

(toroidal electric flow)

∼ vth,i

Ambipolarity must be imposed and it will determine the radial electric
field.

The steady state

toroidal rotation

→ centrifugal force

→ large poloidal electric field Eθ

42



Another effect

toroidal rotation

→ centrifugal force

→ drift ⊥ , due to FR×n̂

8 Variational principle for guiding center equa-
tions Littlejohn

NOTE several coments are in Hahm Fong.

The variational equation

δ

∫
L dt = 0

L =
1

ε
A∗ · dX

dt
+ εµ

dζ

dt
−H

H =
1

2
U2 + µB + Φ

hamiltonian

where µ =
v2⊥
2B
, ζ ≡gyroangle, A is the magnetic potential.

The notation ε is more complicated.
It is

ε =
ρL
a

where ρL is the Larmor gyration radius and a is either the minor radius or
the typical length of variation of the equilibrium, ε ∼ Ln for example.

ε will be considered a small quantity and used for expansion.

Here

U ≡ parallel velocity of the guiding center (usually v‖)

dµ

dt
= 0

µ ≡ constant of motion
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dζ

dt
=
B

ε

The reason to use ε, a measure of weak spatial variation ∼ ρ/L, is to
introduce new variables E instead of the electric field, Ephys = ε E. And
electric potential φphys = ε φ.
In addition, the time variation will be "expanded"

t → τ

τ = εt slow time scale

The modified vector potential

A∗ = A + εU n̂

and for magnetic field
B∗ = B + εU ∇×n̂

and for the electric field

E∗ = −∂A∗

∂τ
−∇Φ

= E− εU dn̂

dτ

NOTE
This modification of the magnetic potential (and, as a consequence, of the

magnetic and electric vectors) must be seen as the identification of the "drift
magnetic surfaces" A → A∗ = A +

v‖B

Ω
. They are explained in Hazeltine

Hinton Eq.(3.25) and in Catto Kagan (more recently).
The magnetic surfaces that correspond to

µ = ct

ε = ct

ψ∗ = ct

are called drift surfaces [Morozov Solovev]

B∗ ·∇ψ∗ = 0

The guiding center motion is confined to this surface ψ∗.

vguiding−center =
B∗

B
v‖
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ψ∗ = ψ − I

Ω
v‖

where I ∼ RBT .
END

The equation derived by Littlejohn

E∗ +
1

ε

dX

dt
×B∗ =

dU

dτ
n̂ + µ∇B

Since U is the parallel velocity

U = n̂ · dX
dt

the time variation of the position vector can be found from the two equations
above

1

ε

dX

dt
×B∗ =

dU

dτ
n̂ + (µ∇B − E∗)

This is vector-multiplied by n̂,

n̂× 1

ε

(
dX

dt
×B∗

)
= n̂× (µ∇B − E∗)

1

ε

dX

dt
(n̂ ·B∗)−B∗

(
n̂ · 1

ε

dX

dt

)
= n̂× (µ∇B − E∗)

we now make explicit in the left hand side

(n̂ ·B∗) = B∗‖

and

−B∗
(

n̂ · 1

ε

dX

dt

)
= −B∗

1

ε
U

then
1

ε

dX

dt
B∗‖ =

1

ε
U B∗ + n̂× (µ∇B − E∗)

dX

dt
=

1

B∗‖
[U B∗ + ε n̂× (µ∇B − E∗)]

It is noted
B∗‖ = B + εU n̂ · (∇×n̂)

which is obtained by
B∗‖ = n̂ ·B∗
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The formula to be used further is

dX

dt
=

1

B∗‖
[U B∗ + ε n̂× (µ∇B − E∗)]

where we take
E∗ ≡ 0

then we have
dX

dt
=

1

B∗‖
[U B∗ + ε n̂× µ∇B]

Actually, the last term in the formula above must be written in the ex-
tended form, including all parts of the drift velocity (what is here is only the
magnetic drift)

1

B∗‖
[ε n̂× µ∇B]

→ 1

B∗‖
[vD]

and vD is calculated above.
And the first term is

1

B∗‖
[U B∗] → U n̂

∼ v‖

This means to use as drift velocity (magnetic and curvature drifts)

m

e

1

B2
µ B̂×∇B

+
m

e

1

B
v2
‖

1

B2

{
B̂×∇B +B (∇×B)− B

B
[B · (∇×B)]

}
which is introduced in the expression of dX

dt
.

Before doing that, we must recall the explanations regarding the necessity
to define the drift surfaces by modifying the poloidal flux function (surface
function) ψ to ψ∗, as shown byMorozov Solovev, Littlejohn, Hazeltine
Hinton, Catto Kagan.
It is found that

vguiding−center =
B∗

B
v‖
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Then, everytime we will have a combination of parallel velocity v‖ and of
guiding-centre velocity, vD there will be a coeffi cient

B

B∗‖

in front of the guiding centre drift.

This is

dX

dt

= v‖ +
B

B∗‖

{
m

e

1

B2
µ B̂×∇B

+
m

e

1

B
v2
‖

1

B2

(
B̂×∇B +B (∇×B)− B

B
[B · (∇×B)]

)
+electric drift}

This is the equation used by Jenko2008.

9 Lie transform. Brizzard

Objective: derive the gyro-kinetic equation in a referential that co-moves
with the toroidally rotating plasma.
Transformation of variables

(x,v)→ (r,v − us)

Method: Lie transformation.
Elimination of the fast gyromotion time scale.

The equilibrium force balance

(us ·∇) us = − 1

msNs

∇ps − Ωsus × n̂ + Ωs
1

B
∇Φ

Taking out explicitley the velocity

u = u‖n̂

+
1

Ω
n̂×

[
1

eN
∇p+

e

m
∇Φ +

m

e
(u ·∇) u

]
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The equation of continuity
∇· (Nu) = 0

Velocities are ordered according to the parameter 1/Ωc.
Zero order

u(0) = u
(0)
‖ n̂ +

−∇Φ(0) × n̂

B

The first order

u(1) = u
(1)
‖ n̂ +

1

B
n̂×

[
∇Φ(1) +

B

Ωc

(
1

mN
∇p+

(
u(0) ·∇

)
u(0)

)]
where

∇‖Φ(1) 6= 0

The equilibrium of a rotating plasma requires

u·
(
∇ lnN − 3

2
∇ lnT

)
= 0

This implies that N
T 3/2

is uniform along the rotation u. In particular this is the
combination of plasma parameters that occurs in the frequency of collisions.

n̂ ·∇ lnT = 0

no temperature variation along the magnetic field.

n̂ ·
[
∇ lnN +

e

T
∇Φ +

m

T
(u ·∇) u

]
= 0

The first two terms can form the Boltzmann distribution, for constant T,

N ∼ exp

(
−eΦ
T

)
but it is perturbed by the inertial nonlinearity.

u·3
2
∇ lnT +∇ · u = 0

This is the equation of continuity, ∇· (Nu) = 0, using the first condition.

1

3
∇ · u + n̂ ·∇u·n̂ = 0

This is a tensorial contraction.
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Consider the equilibrium potentials

A, Φ

Consider a system of reference that moves with velocity u of the plasma.
The phase space of a particle in this frame has the following coordinates

z ≡ (r, w0, µ0, α0)

The coordinates are noncanonical.
The differential one-form consists of the simplectic part, of the type p · dr

and the Hamiltonian part, h dt.

γ = [eA +m (u + c)] · dr

−
(
eΦ +

m

2
|u + c|2

)
dt

It has been introduced the velocity c of the particle in the frame that moves
with the fluid (with velocity u). This particle velocity has components rela-
tive to the magnetic field

c = w0 n̂ + c⊥

and

µ0 =
mc2
⊥

2B

lowest order magnetic moment.

α0 ≡ gyroangle

The procedure to go from particle phase space coordinates to guiding
center coordinates consists of using the Lagrangian γ in an expansion in a
small parameter

ε ≡ m

e

To first order, the Lagrangian of the guiding center

Γ = A∗ · dX +
1

Ωc

µB dα−H dt

[the reason to retain the second order term 1
Ωc
µB dα is to obtain later a

term in the Poisson bracket associated to this Lagrangian]
The new coordinates are

X, W, µ, α
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X ≡ guiding center coordinates

W ≡ parallel guiding center VELOCITY

in the moving frame

µ ≡ magnetic moment of the guiding center

α ≡ guiding center gyroangle

A∗ = A+
m

e

(
u(0) +W n̂

)
and the guiding center Hamiltonian

H = eΦ + µB +
m

2

∣∣u(0) +W n̂
∣∣2

The energy. Remember u(0) consists of a 0-order parallel velocity u(0)
‖ n̂ plus

the electric poloidal velocity of order-0, Φ(0). To this it is added the velocity
W n̂ which is the guiding center particle velocity.

Using the simplectic part of the Lagrangian

A∗ · dX +
1

Ωc

µB dα

it is derived a Poisson bracket

{F,G} =
Ωc

B

[
∂F

∂α

∂G

∂µ
− ∂F

∂µ

∂G

∂α

]
− 1

eB∗‖
n̂ ·∇F ×∇G

+
1

mB∗‖
B∗·

(
∂G

∂W
∇F − ∂F

∂W
∇G

)
where

B∗ = ∇×A∗

= B +
B

Ωc

∇× u(0)∗

B∗‖ = n̂ ·B∗

= B

(
1 +

1

Ωc

n̂ ·∇× u(0)∗
)

u(0)∗ = u(0) +W n̂
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Using the Poisson bracket, the equation for the guiding center position

·
X = {X, H}

=
1

eB∗‖
n̂×∇H

+
B∗

mB∗‖

∂H

∂W

and for the parallel velocity of the guiding center

·
W = {W,H}

= − B∗

mB∗‖
·∇H

The equation for the guiding center moment

·
µ = {µ,H} = 0

and for the guiding center gyroangle

·
α = {α,H} = 0

In detail
·

X = u(0)∗ +
1

eB∗‖
n̂×

[
e∇Φ(1) + µ∇B +m

(
u(0)∗ ·∇

)
u(0)∗]

= u(0)∗ + VD

·
W = − 1

mB∗‖
B∗ ·

[
e∇Φ(1) + µ∇B +m

(
u(0)∗ ·∇

)
u(0)∗]

The velocity u(0)∗ consists of a part that is u(0) and the parallel velocity
W of the guiding center in the moving frame

u(0)∗ = u(0) +W n̂

= u
(0)
‖ n̂ +

−∇Φ(0) × n̂

B

Further, u(0) consists of the parallel velocity u(0)
‖ n̂ plus the poloidal electric

velocity due to the potential Φ(0). The electric field in this zeroth order,
−∇Φ(0) is related with the velocity and the magnetic field by

∇Φ(0) = u(0)∗ ×B
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The convective part of the inertial term is(
u(0)∗ ·∇

)
u(0)∗ =

[(
u(0) +W n̂

)
·∇
] (

u(0) +W n̂
)

=
(
u(0) ·∇

)
u(0) centrifugal

+W 2 (n̂ ·∇) n̂ acceleration by curvature

+W ∇‖u(0) (3)

+W
(
u(0) ·∇

)
n̂ (4)

The terms (3) and (4) can be written

W ∇‖u(0) +W
(
u(0) ·∇

)
n̂

= 2W ∇‖u(0) Coriolis

−W ∇‖u(0) +W
(
u(0) ·∇

)
n̂

The last two terms are

−W ∇‖u(0) +W
(
u(0) ·∇

)
n̂

= −W n̂
(
u(0) ·∇

)
lnB −W n̂

(
∇ · u(0)

)

10 Poloidal rotation
The drift turbulence rotates poloidally
in the electron diamagnetic direction

With B pointing away along the line of sight (i.e. into the page) , the
drift turbulence rotates in the clockwise direction.

The rotation of plasma along the magentic field lines is NOT uniform, it
is modulated like the magnitude of the magnetic field. For this reason it is
defined

U =
u‖
B

Note also that the neoclassical intrinsic flows, at equilibrium, in plasma
exist

• without resistivity: hose-like; poloidal, toroidal, zero radial; with cos θ
variation in the surface, for u, ρ, v and for the currents ; no need to
mention the diamagnetic flow but a poloidal rotation at equilibrium
MUST be assumed.
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• with resistivity: the radial velocity appears ∼ η. Pfirsch Schluter

see below and Stringer.tex, equilibrium_flows.tex.

NOTE
About the connection between the poloidal and toroidal rotations. From

several (Russian) sources and Rozhansky Tendler.
Main contribution to the radial transport comes from particles with poloidal

velocities
VE + ΘV‖ ≈ 0

where VE = (−dφ/dr) /B is the poloidal velocity due to the radial electric
field. Θ ≡ Bθ/BT . This relation is on the poloidal direction. When the
poloidal electric velocity VE increases the parallel velocity V‖ must also in-
crease and with such a sign to maintain VE + ΘV‖ ≈ 0. This can be so
important that a number of trapped particles actually become circulating.
There are two consequences:

• there is a possible instability. This comes from the fact that any con-
version from trapped to circulating leads to a change in the position of
the centers of the trajectories and then to a radial current. This radial
current may enhance the poloidal rotation and the process is amplified

• the number of trapped particle decreases, which makes a smaller boot-
strap current

NOTE that there is physical mechanism that connects the two rotations,
VE and V‖. We just say that it is necessary.

10.1 Main ion and impurity rotation Kim 1994

The bootstrap current is carried by both electron and ion species roughly at
an equal amount.
The parallel flow

niu‖i = −niI
1

B

∂Φ

∂ψ
electric

− B

〈B2〉
I

eiS

∂p

∂ψ
projection of diamagnetic

−
(

1− B2

〈B2〉

)
I

eiB

∂pi
∂ψ

Pfirsch Schluter
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and the poloidal flow

uθ =
Bθ

〈B2〉
I

eini

(
1− 1

S

)
∂pi
∂ψ

NOTE
For

I = RBtor

|∇ψ| = 2π RBθ

then

I
∂

∂ψ
→ Btor

Bθ

∂

∂r

= (projection on ‖)× ∂

∂r

END

For a trace impurity

uIθ =
1

2
vth,iρi

(
1− 1

S

1

Lpi
+
Zi
Ti

TI
ZI

1

LpI

)
B Btor

〈B2〉

The difference in the toroidal velocity, between ions and impurities

uiϕ − uIϕ =
1

2
vth,iρθi

(
− 1

Lpi
+
Zi
Ti

TI
ZI

1

LpI

)(
1− I2

R2 〈B2〉

)
It is a large difference between the two toroidal velocities of He++ and of
C+6.

10.2 Hinton Kim Kim Brizard Burrell poloidal rota-
tion 1995

This is interesting only because the flow of ions is sustained by the trapped
ions, from unbalanced local fluxes arising from density gradients.
In bootstrap.tex.

From Hinton Kim poloidal rotation
Strong electric field. Squeezing S is important.
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"measurements show that, shortly
after the low (L)- to H-mode transition, the main ions are
rotating in the ion diamagnetic direction, at a speed that is
somewhat less than the ion diamagnetic speed."
The impurities rotate in opposite direction.
The direction of ion poloidal rotation is that which is imposed by the

trapped ions, via the imbalance of fluxes in the presence of a gradient of
pressure (diamagnetism of trapped ion bananas, projected on the poloidal
section).

In Theory: Poloidal rotation driven by loss of ions should be in the elec-
tron diamagnetic direction.

In the paper Hinton Kim Kim poloidal rotation 1995
"Consider the detailed balance of momentum transfers in
collisional trapping and detrapping. A steady state requires
that momentum be gained by the trapped ions in the process
of collisional trapping at the same rate that it is removed by
collisional detrapping:"

nuntru‖untr =

(
νtr
νuntr

)
ntr u‖tr

Note see also Cordey. End.

NOTE
This equilibrium is only interesting for the two populations of ions:

• trapped, and

• untrapped

And the equilibrium just expresses preservation of the total momentum.
The events that bring circulating ions into trapped state bring (to the

population of trapped ions) a momentum per unit of time

nuntru‖untr mi × νuntr

The events that convert a trapped ion into a circulating one will remove
from the "total momentum" of the population of trapped ions an amount of
moment, per unit of time

ntru‖tr mi × νtr
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For equilibrium, the total momentum "contained" in the population of
trapped ions must remain constant.
Then, what is introduced must be equal with what is taken off, per unit

of time
nuntru‖untr mi νuntr = ntr u‖tr mi νtr

END

NOTE
However here we have two different processes.
One is the conversion of a circulating ion into a trapped state. This is

done by collision. At this event a certain amount of momentum, per unit
time, is brought to the population of trapped ions, nuntru‖untr mi × νuntr.
The other process is the collisional transfer of momentum from the trapped

ions to the circulating ions, but NOT necessarily a conversion from trapped
to circulating. In this case the mechanism is just like the bootstrap. And
there is loss of momentum from the population of trapped ions: or, relaxation
of the gradient of pressure of the trapped particles.

Then the balance expressed by nuntru‖untr mi νuntr = ntr u‖tr mi νtr is
actually a balance of fluxes of momentum at the boundary trapped/circulating
in the velocity space.
[not clear why this should be in equilibrium]
This balance does NOT mention a gradient of pressure.
It is simply a question of fluxes across the boundary in velocity space

separating trapped from circulating.

But
we have ONE mechanism of input of momentum from circulating to

trapped, i.e. at an event of conversion of a circulating into trapped, and
we have TWO mechanisms for loss of momentum from the population of

trapped particles:
(1) by collisional conversion of a trapped ion into a circulating one (i.e.

across the boundary in velocity space), and
(2) by the collisional transfer of momentum from the "unbalanced flows

of bananas due to a gradient of pressure" to a circulating particle, i.e. by
relaxation of the gradient of pressure.
END

NOTE
This balance is similar to the formula used by Cordey to explain the

bootstrap current. There, the momentum gained by circulating electrons
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by collisions from the trapped ions is further saturated (i.e. controlled) by
collisional friction with background ions.
END

NOTE
However in ELMs the population of trapped ions increases.
The layer of poloidal velocity is destroyed, which means that the parallel

flow is also reduced. The parallel flow was carried by the circulating ions,
and this was partly due to the momentum they received collisionally from the
trapped ions. Many circulating ions will be converted into trapped ions (de-
crease of their parallel velocity). The amount of momentum that is injected
this way in the population of trapped ions is high.
It is not possible to the opposite process, of conversion from trapped to

circulating, - to be equally effi cient.
END

The ratio of collision frequencies

νtr
νuntr

=

(
vth,i
δu‖

)2

δu‖ = (εS)1/2 vth,i

= range of parallel velocities

for the trapped particles

Counting the flux of trapped particles in a point, from the two directions

ntr u‖tr =
1

2

[
n

(
r − δr

2

)
− n

(
r +

δr

2

)]
×δu‖

= −1

2
δr δu‖

∂n

∂r

Here δr is taken the banana width

δr =

√
ε

S

vth,i
Ωθ

"identifying the mean ion flow
with the untrapped ion flow,"

(
nu‖
)
untr

= −
v2
th,i

2SΩθ

∂n

∂r
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Note the mean ion flow is what really can move, the other being fixed
on bananas. They are exclusively the untrapped ions. End.
See also bootstrap.tex.
The calculation was done in a referential that move with Er

Bθ
velocity in

toroidal direction, reasonable choice for discussing banana motions.
Now we return to the laboratory frame

nu‖ = n
Er
Bθ

− 1

S

T

eBθ

∂n

∂r

Further, one uses

uθ = u⊥ +
Bθ

B
u‖

and

u⊥ = −Er
B

+
1

ni

1

eiB

∂pi
∂r

it results

uθ =
1

ni

Ti
eiB

(
1− 1

S

)
∂ni
∂r

"In DIII-D H-mode plasmas, the resulting
ion poloidal flow velocity is predicted to be roughly half the
ion diamagnetic velocity near the separatrix,"

NOTE
the persistent experimental observation is that
- the plasma rotation is in the ion diamagnetic direction
- the ion poloidal flow is smaller (half) of the diamagnetic rotation
END

NOTE
This work does NOT assume the presence of a mechanism that supports

Er.
The parallel motion of ions is strictly due to the collisional transfer of

momentum from the trapped ions to the circulating ions.
This transfer is such that the unbalanced flux of trapped ions (as results

from the gradient of density of trapped ions) is fully transferred collisionally
to the circulating ions, with corresponding collision ferquencies.
This provides an expression for u‖i in terms of ∂ni∂r .
The radial electric field contributes (however) to the parallel flow (first

the calculations are done in a referential moving with the parallel electric
velocity, then return to laboratory).
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But when one considers the projection of u‖i such as to obtain uθ, the
electric field disappears. This is because the perp component of flow contains
already Er/B but with opposite sign.
In conclusion, here the poloidal flow uθ does NOT depend on the radial

electric field.
What is the meaning of that cancellation of the electric field ?
This means that as much Er offers a poloidal flow, the same amount is

lost by the projection of the Er contribution to parallel flow. The usual
constraint to exclude effective poloidal rotation, since it is damped. What
however remains on θ is the diamagnetic flow.
This is what Hinton Kim find at the end.
The poloidal rotation is like diamagnetic, but contains a factor S and is

suppressed if S = 1.
There is NO poloidal rotation in this treatment.

See Peeters bootstrap.
END

10.3 Electric field separatrix Kim Hinton 1994

The formula
n̂×∇ψ = In̂−RB êϕ

Then neglecting
∂pi
∂θ

and
∂φ

∂θ

i.e. the variation in surfaces of the pressure and of the electric potential, an
approximation of the perpendicular velocity is

ui⊥ =
1

B
n̂×

(
1

nie
∇pi +∇φ

)
≈ ω

(
−n̂

I

B
+R êϕ

)
where

ω = −
(

1

nie

∂p

∂ψ
+
∂φ

∂ψ

)
The final form is

[(n̂ ·∇) n̂] · ui⊥ ≈ ω I (n̂ ·∇)

(
1

B

)
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Comment.
We must calculate

n̂ ·∇ n̂ · ui⊥

= n̂ ·∇ n̂ ·
[
ω

(
−n̂

I

B
+R êϕ

)]
In reference we find

(n̂ ·∇) n̂ · êϕR
= κ · êϕR (toroidal projection of curvature)

= In̂ ·∇
(

1

B

)
This suggests that the writting is conform to the following group of contrac-
tion

n̂ ·∇ n̂ ·
[
ω

(
−n̂

I

B
+R êϕ

)]
= κ·

(
−ωn̂

I

B

)
+ κ· (ωR êϕ)

= 0 + ω I n̂ ·∇
(

1

B

)
and this gives the final result, conform to electric field separatrix Kim

(n̂ ·∇ n̂) · ui⊥ ≈ ω I (n̂ ·∇)

(
1

B

)
This is the projection of the perpendicular velocity of ions on the curvature
vector

κ · ui⊥

The writting is ambiguous. We have four vector and we obtain a scalar.
Then there are two contractions. If there is contraction between the first n̂
and the n̂ after the nabla, then this is zero

↓
n̂ ·∇

↓
n̂ · ui⊥ → n̂k ∂jn̂k ui⊥,j

= (n̂k ∂jn̂k) ui⊥,j + n̂k n̂k (∂jui⊥,j)

= 0 +∇ · ui⊥ = ∇·
[
ω

(
−n̂

I

B
+R êϕ

)]
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the first term

n̂k ∂kn̂j ui⊥,j ∼ n̂k ∂k n̂j

[
ω

(
−n̂j

I

B

)]
= −ω I (n̂k ∂k)

(
1

B

)

END Comment

After neglecting ∇‖ω, it is obtained the divergence of the perpendicular
velocity of the ions

∇ · ui⊥ ≈ −2 ω I (n̂ ·∇)

(
1

B

)

10.4 Radial electric field LH Groebner DIII

From the text
"For
discharges with the toroidal field BT in the standard
direction, which is clockwise as viewed from the top of
the tokamak, v⊥ is directed up at the outside edge of the
plasma. This geometry implies that the V ×B term of
Eq. (1) makes a negative contribution to Er"

10.5 Poloidal rotation Turnianski

Text
"For the
discharge of interest the maximum diamagnetic drift
velocity is estimated to be 40 km/s and in the
opposite direction to the E ×B drift velocity."

Increase in vθ is observed immediately after
an ELM terminates and falls more rapidly back to
the initial velocity around the end of an inter-ELM
period.
The vθ attains its maximum just before the ELM. ∼ −9 km/s.

"Simulations show that the diamagnetic drift veloc-
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ity contribution to the observed poloidal velocity
is at most 2 km/s in the same direction as the
observed rotation but small compared with that
at the end of the inter-ELM period."

10.6 Rotation counter current Alcator C Rice

"The internal inductance and core rotation velocity
both dropped at first, but as the MHD activity developed at
0.93 s, as seen on the magnetics trace, the rotation velocity
halted and there was an increase in li."

10.7 Poloidal rotation Stacey

The paper is poloidal rotation Stacey 2002.

The equations
Continuity for j,

∇· (njvj) = 0

Momentum cnservation in stationarity

njmj (vj ·∇) vj = −∇pj −∇ · πj
+ejnj∇φ+ ejnjvj ×B

+Mj + Rj

−mjSjvj

where
Mj ≡ external momentum source for species j

Rj ≡ interspecies collisional momentum transfer

= −njmj

∑
k 6=j

νjk (vj − vk) (Lorentz collisions)

Sj ≡ particle source for species j

The neoclassical parallel viscosity tensor
using neoclassical parallel viscosity coeffi cient in banana-plateau

η0j = njmjvth,jqR ε−3/2
ν∗jj(

1 + ε−3/2ν∗jj
) (

1 + ν∗jj
)
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where the normalized collision frequency

ν∗jk =
νjk

vth,j/ (qR)

Since we intend to project the momentum equation on the poloidal dirac-
tion, we will calculate
the poloidal component of the divergence of the parallel viscosity tensor

êθ ·∇ · πj = η0j

(
1

2
A0j

)[
∂

r∂θ
ln
(
η0jA0j

)
− 3

sin θ

R

]
where

1

2
A0j = −1

3

∂

r∂θ
vθj

+vθj

(
∂

r∂θ
lnR +

1

3

∂

r∂θ
lnBθ

)
+

(
Bθ

Bϕ

)
R

∂

r∂θ

(vϕj
R

)
The toroidal velocity results from the radial projection of the momentum

equation (like jr = 0)

vϕ,j (r, θ) =

(
Bϕ

Bθ

)
vθ,j (r, θ)

+
1

Bθ

[
−∂φ (r, θ)

∂r

]
+

1

nj

1

ejBθ

[
−∂pj (r, θ)

∂r

]

The average
〈∇ · njvj〉 = 〈Sj〉

This is subtracted from the equation of continuity

∂

r∂θ
[(1 + ε cos θ) njvθ,j]

= (1 + ε cos θ) (Sj − 〈Sj〉)

Integrated in θ this equation it must be added a constant

Kj (θ)
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Then

vθ,j (r, θ)

=
1

1 + ε cos θ
nj vθ,j

+
1

1 + ε cos θ

∫ θ

0

dθ′ (1 + ε cos θ′)
[
Sj (r, θ)− Sj (r, θ)

]
Now

êθ · [(vj ·∇) vj]

≈ 1

2

∂

r∂θ
v2
θ,j +

v2
ϕ,j

R
sin θ

It is assumed the following form

nj (r, θ)

= 1 + ncj (r) cos θ

+nsj (r) sin θ

+...

Moments 〈
1

njmj

1

1 + ε cos θ
(êθ · [momentum eq.]) X

〉
for

X = 1,

sin θ,

cos θ

11 Experiments and observations

The paper core flows transitions lebschy 2017.
"The core poloidal rotation of the plasma around mid-radius is found to

be always in the
ion diamagnetic direction, in disagreement with neoclassical (NC) predic-

tions. The edge
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rotation is found to be electron-directed and consistent with NC codes."

"This paper shows
that the reversal of the core toroidal rotation occurs clearly after the LOC—

SOC transition and
concomitant with the peaking of the electron density."

LOC → TEM

SOC → ITG

"The phase velocity is directed in the electron diamagnetic
direction for TEM and in the ion diamagnetic direction for
ITG turbulence and vph is, therefore, indicative of the dominant
turbulent mode and a change in the sign of vph would be
expected assuming that there is a change from TEM to ITG."

"Ohmic L-mode discharges feature another interesting phenomenon:
the intrinsic core toroidal is observed to spontaneously
reverse from the co- to the counter-current direction when the
electron density is increased. In this paper, intrinsic rotation
refers to the toroidal rotation of the plasma established in the
absence of externally applied torque"
In the paperAdvanced Simulation Hayashi JT60upgrade it is men-

tioned that Tungsten accumulates in the center in the case of toroidal rotation
in the counter-current direction, which is in general associated to L-mode. It
is also proposed an explanation for the high Z inward pinch, based on the fact
that the toroidal rotation is transmitted to them via friction, they increase
the energy and hence the orbit width (departure from the magnetic surface)
they traverse zones with different electron temperatures and change the av-
erage degree of ionization (effective Z ) and the toroidal velocity is inversely
proportional with the charge. Therefore it appears an inward pinch.
(But, other people seem to say that the accumulation of impurities in the

center is typical for H-mode. To check).
See also Isler:
the influx of Fe toward the centre is very fast in NBI counter-

injection , i.e. in the direction contrary to the current. Plasma begins to
cool in the centre rapidly.

From the paper Rotation Ohmically Heated Tokamak TEXT.
The toroidal rotation velocity at the perifery in He is much higher than

the toroidal rotation velocity in H. This looks like a atomic mass effect.
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The ion thermal velocity was

vthi = 90 (km/s)

At the plasma perifery the rotation is in the direction of Ip, the plasma
current. Co-current, as in H mode of Alcator C-mod Rice.
In the center, the toroidal rotation is opposite to Ip. (Counter like in the

case of Alcator in L mode)
This reminds the problem of DIPOLE flows. The cases:

1. Two-dimensional flow consisting of two lobes of flow, the upper mono-
pole of one sign and the lower monopole of opposite sign. This structure
is unstable and can lead to a new dipolar arrangement, where there are
two monopoles: one compact in the center of the disk and the other one
ring-type at the periphery of the disk, with opposite direction of flows.
This time it is question of dipolar toroidal flow. Another example is
dipolar poloidal flow.

2. Three-dimensional flow in a toroidal geometry consisting of a flow oc-
cupying half-torus and having one sign and the other half-torus being
occupied by a flow with opposite direction. The configuration of flow
is discovered byMontgomery for a no-slip boundary condition of the
flow with viscosity (MHD equilibria in tokamak with poloidal flow and
viscosity). This configuration is unstable and leads to a new distribu-
tion of flows in the torus with a different structure: in the center there
is flow on a compact torus and having one direction and in the outer
part of the original torus there is a flow with a geometry of toric-shell
and having opposite direction. The transition from the first state to
the second takes place by a large scale motion where one of the flows
is captured inside the other. The original state is similar to what we
have from Pfirsch-Schluter currents in tokamaks. The PS distribution
is harmonic due to the sin θ term in the toroidal flow that accompanies
the poloidal flow.

In the paper Space potential in the tokamak TEXT PFB3 (1991)
3448 there is a description of the experiments of measuring the radial profile
of the electrostatic potential in TEXT using Heavy Ions Beam Probe HIBP.
They mention the experiments done on TM4 by Russians where they

see a negative potential in the plasma centre and a small region of positive
potential at the edge. They invoke Ware pinch for electrons toward the centre
and a loss of ions from the local bananas to the limiter. However there is a
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region of positive ϕ at the edge and the width of this region is larger when
the density is increased. They invoke the intrinsic stochasticity as a source
of loss of electrons from that region, leading to a higher density for the ions.
The conclusion for TEXT. In the central region, with ϕ < 0:
Normal Ohmic discharges are approximately explained by ion momentum

balance equation using an assumed neoclassical poloidal rotation velocity and
NO significant toroidal rotation velocity.
In TEXT

Er = −∂ϕ
∂r

=
1

|e|ni
∂pi
∂r

+ 〈vT iBθ〉 − 〈vθiBT 〉

where pi = niTi is the ion pressure and 〈〉 is over the flux surface. For TEXT
the following inequalities exist

〈vT iBθ〉 � 〈vθiBT 〉 �
1

eni

∂pi
∂r

Then the toroidal velocity part can be neglected. Strangely enough, the
diamagnetic velocity is higher than the poloidal rotation velocity.
The poloidal rotation is assumed to be neoclassical

vθi = −g 1

eBT

∂Ti
∂r

where g depends on collisionality,

g ' 1

2
for plateau

see Hazeltine for PS and banana, seeWare Wiley for the demonstration
of the stationarity of poloidal rotation in neoclassics.
Then

Er =
Ti
eni

∂ni
∂r

[1 + ηi (1 + g)]

where

ηi =
d ln (Ti)

d ln (ni)
=
Lni
LTi

Predictions for the central ion temperature according to Artsimovich

TArtsi (0) = κ
3
√
BT IpneR2

√
Ai

67



where

κ = 2.8× 10−6

[BT ] = tesla

[R] = m

[Ip] = amperes

[ne] = m−3[
TArtsi (0)

]
= eV

Then the potential in the centre is

ϕ (0) = − (2.5± 0.5)
TArtsi (0)

e

It is applied in TEXT a Ergodic Magnetic Limiter effect. The electric
field at the edge becomes more positive, on a wider radial interval.
The theoretical value of the expected radial electric field that is deter-

mined in a region of magnetic stochasticity in a collisonless plasma is

Est
r =

Te
e

∂
[
ln
(
ne
√
Te
)]

∂r

See also Rozhansky Tendler.
In the stochastic region, the full magnetic island width is

wi = 2

√
4q2 |bmn|R
mBT (∂q/∂r)

and the distance between adiacent island centers ws separated in q by ∆q is

ws =
∆q

∂q/∂r

Condition of reaching stochsaticity (defined as overlap of magnetic is-
lands)

|brmn|
BT

≥ rmn

8Rmq
(
β +
√
β
)2

To calculate the radial component of the magnetic field

br =
∑
m,n

(brmn)r=rmn

(
r

rmn

)−(m+1)

cos (mθ + nφ+ δmn)
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where δmn are random phases.

From the paper Stability Radial Electric field Shaing PF27 (1984)
1567.
The equation for Er can be obtained from the surface average of the

radial component of the Ampère law:

∇×B =µ0j + µ0ε0
∂E

∂t

where
ε0µ0 =

1

c2
,

but with E coming from an electrostatic potential.

∂

∂t
〈E ·∇ψ〉 = − 1

ε0

〈j ·∇ψ〉

This is because the radial component of the rotational of the magnetic field
(∇×B) |r is zero. The radial current 〈j ·∇ψ〉 consists of two pieces:

1. the conduction current, or the non-ambipolar current, driven by the
gradients of pressure, temperature, electrostatic potential∑

a

ea 〈Γa ·∇ψ〉

radial currents

2. the polarization current, driven by the time-varying radial electric field:

∑
a

nama

B2

∂

∂t
〈E ·∇ψ〉

The equation is

∂Er
∂t

=
(1/ε0) |∇ψ|−2

1 + c2/v2
A

∑
a

ea 〈Γa ·∇ψ〉

The equation cannot be purely local, i.e. connected strictly to each mag-
netic surface.
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The radial excursion of the particles due to their drifts extends over sev-
eral surfaces and this finite-size orbit effect induces the diffusion of the radial
electric field

∂Er
∂t

=
(1/ε0) |∇ψ|−2

1 + c2/v2
A

∑
a

ea 〈Γa ·∇ψ〉

+
1

V ′
∂

∂ψ

(
V ′D

∂Er
∂ψ

)
where D is a diffusion coeffi cient.
It should be written

∂Er
∂t

=
1

ε0

(
1 + c2

v2A

) 1

|∇ψ|2
∑
a

ea 〈Γa ·∇ψ〉

+
1

V ′
∂

∂ψ

(
V ′D

∂Er
∂ψ

)
This is also in Hastings, for stellerators, in general non-axisymmetric de-
vices.
See the paper of Hinton and Robertson on the neoclassical polarization

drift that modifies the factor

1 +
c2

v2
A

to 1 +
c2

v2
Aθ

which is much higher. The time variation of the radial electric field
·
Er leads

to radial velocity of the trapped ions vr. The untrapped ions are NOTmoving
radially, in the average over their transit motion.

In the paper ChangeEr NBI Burrell (see above) it is mentioned an
experiment where the fast neutrals of 75 KeV have been injected in a plasma,
counter to Ip (like in L-mode). In very short time, within their first banana
orbit (much less than 1 ms), 38% of these ions have been lost to the border.
The counter-NBI is contemplated as a method to change the radial elec-

tric field Er to facilitate the transition LH. This is because it was considered
that the cause of the L to H transition was the loss of ions from the large
bananas, to the limiter (see also Shaing and Crume).
The colisionless loss of fast ions inforce an inward flow of ions to com-

pensate for the lost charge.
The equation

Er = −vθiBϕ + vϕiBθ +
1

Zini |ei|
dpi
dr
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is valid for any ion (bulk or impurity) separately.
When the NBI is counter-current (like L-mode) the term with the pres-

sure gradient (diamagnetic) and the term with the poloidal magnetic field
(containing the toroidal velocity) are negative

1

Zini |ei|
dpi
dr

< 0

vϕiBθ < 0

which means that they contribute to the radial electric field with negative
amounts

Er < 0

Very little orbit loss in the co-injection case.
Co-injection (like in H-mode) means that NBI ions are sent parallel with

the plasma current Ip, which means contrary to the motion of electrons that
carry the current.
The profile of the toroidal velocity is affected by the momentum diffu-

sion and by the charge-exchange collisional damping. [See Fulop Catto
Helander for this effect.]
The torque applied to plasma in the toroidal direction due to the radial

loss of ion (on fast orbits) is calculated as

Jorbitr BθRdR

and the evolution of the torque is given by the equation

∂

∂t
(niUϕ) =

1

r

∂

∂r

(
rχni

∂Uϕ
∂r

)
+ Fnb + Fcx

where χ is the diffusivity of the toroidal momentum.
The force produced by the charge-exchange with the neutrals is

Fcx = niUϕνcxt0

νcx = N 〈σv〉cx rate of charge exchange

number of cx events per unit of time

N ≡ density of neutrals = N0 exp

(
−1− r

δ

)
where t0 is a characteristic time, N0 = 1016 neutrals/m3 , δ = 0.05.
The radial profile of the coeffi cient of transport of toroidal momentum is

χ =

{
k (0.05 + r2) for r < rc

0.2k for r > rc
with k = 3.5

rc = 0.8
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There is a time lag between the fast ion loss and the rise of the torque
Jr ×B. Note that at the Hinton-Rosenbluth mechanism there is no time
lag.
The torque applied in the toroidal direction was very substantial in the

edge region.
However precisely there the toroidal rotation was not very important.

Probably due to the fact that the torque had to compete with CHARGE-
EXCHANGE COLLISIONAL DAMPING and with momentum diffusion.
The loss of fast trapped ions is prompt.
But it takes time for the torque J×B to induce toroidal rotation.
Conclusion of Burrell for counter-NBI : the idea of driving the toroidal

rotation Uϕ using J×B torque is not straightforward after all. It depends
on momentum diffusion.

Reversal of direction of toroidal rotation.
In the experiments of density ramp up (Alcator) by Bortolon Duval

Scarabosio it is observed a change in the direction of toroidal rotation when
the density increases. No additional momentum input.
The total angular momentum of the plasma column carried by the carbon

plasma component nC evolves

from − 10× 10−5 to 1× 10−5 (J s)

Burrell 1996 fast Er transitions.
It is revealed that the poloidal velocity plays an important role.
The poloidal velocity

vθi is in the direction of ion diamagnetic rotation vdia,i

This also means that the electron diamagnetic velocity is approximately equal
(for Te = Ti) and is opposite in direction to the ion diamagnetic velocity since

vdia,e =
1

nemeΩe

n̂×∇pe

vdia,i =
1

nimiΩi

n̂×∇pi

vdia,e =
1

ne (− |e|)Bϕ

∣∣∣∣dpedr
∣∣∣∣ êθ

vdia,i =
1

ni |e|Bϕ

∣∣∣∣dpidr
∣∣∣∣ êθ
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For ne = ni and Te ' Ti we have

vdia,e ' −vdia,i

The effect of vθi is to produce an Er which is positive, i.e. directed
toward the exterior of the plasma (since the term is −vθ,iBϕ).
The contribution from the term with∇pi (diamagnetic) toEr is negative

0 = − 1

niei
∇pi + E + vi ×B

E = −vi ×B +
1

niei
∇pi

Er = −vθ,iBϕ + vϕ,iBθ +
1

niei

dpi
dr

−vθ,iBϕ > 0

1

niei

dpi
dr

< 0 for normal radially decreasing profile of pi

Burrell observes that the

1) positive contribution of vθ,i and

2) negative contribution of
dpi
dr

are comparable

and we note that, if they are comparable

−vθ,iBϕ +
1

niei

dpi
dr

' 0

vθ,i '
1

niniBϕ

dpi
dr

vθ,i ' vdia,i

and conclude that the ion rotation is in the direction of the ion diamagnetic
flow and they have very close magnitudes. Then the effective Larmor radius
is very large

1− vdia,i
vθ,i
→ 0

Burrell finds two-steps in the transition from L to H mode:

1. first part is the rise of Er; note that this consists of charge-separation
as in polarizable medium. Probably this charge separation affects the
drift waves, not by velocity shear but directly as charge separation.
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2. second part is the rise of ∇pi. The diamagnetic velocity begin to
increase due to barrier to density transport.

Note that this can be interpreted as follows: the change of the rotation
vθ,i represents the transition L to H. The pressure pi reacts such as to
generate the ρeffs very large, ρeffs →∞. This is achieved by vdia,i ' vθ,i. The
question would be why.
A direct explanation does not imply ρeffs , but the fact that sheared rota-

tion leads to suppression of turbulence/transport and then the density and
temperature are no more lost to the edge. Their gradients rise. This will end
up when the gradients are so strong that the residual transport (induced by
these gradients) balances the input density and heat and an equilibrium is
reached.
Another explanation would involve the Ertel’s theorem but the shear of

the poloidal velocity is still much smaller than Ωc,i.
We cannot say what physical process makes vdia,i to rise such as to become

comparable to vθ,i. Except that the density gradient increases due to the
transport barrier.
But we can say that the change in vdia,i will stop when ρeffs →∞.
Later. We need however that the rise of the density leads ultimately to

an increase of the diamagnetic flow beyond the poloidal rotation. Because
in this way we can explain the change of the sign of the coeffi cient in the
elliptic differential equation which is obtained after the term with potential
φ is retained, the term with square potential φ2 is zero due to the maxi-
mum of the radial profile of the diamagnetic velocity (Spatschek, Horton,
Petviashvili) and the third-order term φ3 is kept. The solution expressed
as elliptic functions shows localized vortices that can trigger ELMs.

On the other hand we have the observation about the effect that large
ρeff can have in the dynamics of the drift wave instability. Only long poloidal
λ can be excited and the frequencies will be low, similar to poloidal rotation.
End note.

Burrell also note that the evolution of Er is on a time scale of 20−30 µs,
which is extremely fast.
[Note Later : this is the time of ionization and of the generation of torque

from ionization].
The suppression of the drift wave fluctuations is extremely fast, on the

time scale that has been mentioned.
There is a possibility that the suppression of the Cerenkov radiation of the

drift waves to be the reason.
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There is a contradiction in the paper of Burrell: it is said that the term
due to ion rotation −vθ,iBϕ is comparable with the term due to the gradient
of pressure [1/ (niei) dp/dr]. But they have opposite signs and then Er should
be small. Or the figures show it is very large. This contradiction is solved
if we assume that the positive contribution from the poloidal rotation is
compensated and overcomed by the negative contribution from the ∇pi
term. Then Er results negative.

We note however that in the treatment of Nycander of large scale vor-
tices with density of electrons Boltzmannian (plus neutrality) the diamag-
netic velocity which is compared with the velocity of the vortical structure
is the electronic vdia,e. This gives:

1. the direction of the propagation of drift waves

2. the maximum phase velocity of the drift waves

and is therefore the reference physical process that can affect by coupling
and radiation of energy the structure of the vortex.
In other works however it is found that the plasma poloidal rotation takes

place in the ion diamagnetic direction.

This paper should be compared with the article of Stacey 2002 about
the gyroviscosity of neoclassical origin, in DIIID.

The paper Toroidal rotation saw teeth MAST gives radial profiles of
toroidal velocity of rotation in MAST. Stability of magnetic modes against
the new condition, in presence of rotation, are discussed.

Experiment on zonal flow PoP10 2003 1712. Possible connection with
the oscillating solution of the type breather for sine-Gordon equation. And
with Guido who sees layers of poloidal velocity. And with the Japanese
from Marseille CIRM who sees a breathing of large scale.
Sine-Gordon has a breather.

NOTE the breather-like oscillation in a large part of the plasma cross
section may be an oscillator precursor to the transition provoked by an insta-
bility where two halves of toroidal flow, one in one direction and the other in
the opposite direction are transformed into a toroidal dipole of flows. Mont-
gomery Bates. End.

Paper by Rice NF50 2010 on Alcator C-mod Ion Transport Barrier in
the ICRF heating.
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ICRH offaxis: generates ITB. A significant slowing of the intrinsic toroidal
central rotation during the formation of the ITB. Note that we expect that
before ICRH the plasma has equilibrium toroidal rotation in counter cur-
rent sense, because we are in the L-mode. When ICRH is applied an ITB
is formed and the regime becomes more similar to a H-mode. Then the
toroidal rotation should be in co-current sense. At least we see a decrease of
the counter-current flow, as a tendency to reverse the toroidal rotation.
However in the paper Observations anomalous momentum Rice it

is explained the sequence:

1. L-mode

2. EDA (enhanced Dα) H-mode

3. ELM-free H mode

4. ITB

It results that ITB is placed beyond H-mode and then the basic toroidal
rotation should be co-current.
End.
ITB lasts at least 10× τ e.
The density is stronlgy peaked.
The impurities begin to accumulate in the core, often triggering a disrup-

tion of the H-mode.

The paper Co-current Alcator C Mode Rice high frequency is
about the effect of injecting ICRWaves in Alcator C mode and observe that
there is an effect of co-current toroidal rotation. Broken omnigeneity of
trapped ion bananas under ICRH. SeeWhite.

In L mode the core toroidal rotation is counter-current.
At the transition to the H-mode the rotation becomes co-current.
When the ITB forms, the toroidal rotation in the core begins to slow

down. It approaches zero and even can create a well of counter-current
rotation in the center (hallow rotation profile). This is a local reversal of
toroidal rotation.
When the ICRH is applied off-axis to aH-mode and an ITB is formed, the

radial electric field Er is close to zero in the core and even slightly counter-
current, as if that part would be in L-mode. It rises to a high value when it
reaches high value and strong shear. We Note that the figure 7a from this
paper shows that the toroidal velocity in the core, inside the ITB, is very
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small (or even counter) late after the ITB formation. On the other hand we
see in figure 8b that Er is also very small. Therefore from the expression of
Er only the poloidal rotation term and the diamagnetic term survive. They
are almost equal. End.
When ITB is formed via ICRH off-axis the toroidal rotation, which in

H-mode is co-current, begins to slow down and reverses while the density is
peaking.

In the paper ICRH generation rotation it is found that the ICRH
produces a strong toroidal counter rotation, (which we would be tempted to
associate to L-mode). This occurs since most of the ICRH-born minority ions
exist in a trapped regime. If, on the contrary, the minority ions are passing
then the induced toroidal rotation can be in any sense: co- or counter.
They also say that the strong co-rotation obtained by fast waves ICRH

in Alcator C-Mod is paradoxical. They say that the absorbtion of the wave
energy is preferential for ions moving in one direction.

In the paper Neoclassical Poloidal Rotation Stacey it is mentioned
that experiments on ISX-B with NBI have shown that there is a low concentration
of impurities in the center of the tokamak when

• the magnetic field

• the current, and

• the neutral beam

are all in the same direction.
In general the H-mode is known to accumulate Fe in the center, by

redistribution inside the plasma NOT by inflow. If now it is observed low
concentration this may be a signature that there is no H-mode.

The paper Rice Obs anomalous momentum transport in Alcator
C-mod without momentum input.
The first transition is from

L-mode to EDA (enhanced Dα) H-mode

At this transition it results a co-current toroidal rotation which propa-
gates in from the edge towards the centre. The time scale is longer than the
energy confinement time and much less than the neoclassical transport of
momentum.
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NOTE that is compatible with the model of neoclassical polarization: a

fast variation of the radial electric field
·
Er induces a toroidal precession of

the bananas. They drag the untrapped ions on a time fixed by collisions.
END.

In EDA H-mode the toroidal rotation profile is flat ∼ 50 (km/s). The
rotation is co-current.
The rotation cannot be connected with the ICRH wave or fast particle

effects.

∆vtor ∼
Wstored energy

Ip

The velocity profiles

The velocity profiles
L-mode counter rotation

EDA H-mode nearly flat profile
ELM-free H-mode centrally peaked (inward pinch?)

ITB hallow in the centre

The electron density

The density profiles
L-mode ne (r) centrally peaked

EDA H-mode ne (r) flat profile, constant in time
ELM-free H-mode ne (r) flat profile, steadily rising

ITB ne (r) strong central peaking

Going from EDA H-mode to ITB the rotation has been much reduced
and eventually reversed direction, with strong peaking of the electron density
in the centre. At the barrier foot there is a positive gradient of Er:

δEr
δr

=
(+8 kV/m)r/a=0.6 − (−8 kV/m)r/a=0.3

δr
> 0

In ITB there is a strong concentration of impurities in the core.
In ITB there is a negative Er well in the core.
In L mode the rotation is mainly in the counter-current direction. The

density has strong effect on the rotation.

The paper Rice spontaneous core toroidal rotation.

78



Reversal of toroidal rotation from counter to co, following small changes
of the electron density and plasma current.
In L mode

−60 km/s < vtor < +20 km/s

As the density falls, the toroidal rotation reverses to cocurrent. NOTE
that this suggests that the plasma has accessed the H-mode.END.
Similar to TCV: when the density increases there is inversion of the ro-

tation from co to counter, which means transition from the H-mode to the
L-mode. This means that high density is detrimental to H-mode.
When the magnetic field is lowered the toroidal velocity reduces from

strongly counter-current to zero velocity. NOE that we can interpret that
in the sense that B low is favorable to the H-mode. END.
When the toroidal velocity is close to 0 (plasma is almost stagnant) there

is transition to the H-mode.
Co-current central rotation is indicative of a positive core radial electric

field
co-current rotation → Er > 0 in the core

The evolution

L-mode, Er = −15 kV/m < 0, counter rotation
→ L- to H- mode transition→

H-mode, Er = +40 kV/m > 0, co rotation

In the core:

1. no measurable poloidal rotation

2. weak diamagnetic contribution

The paper Observation of inward outward particle convection in
the core TCV Furno Weisen.
Observation of inward and outward particle convection correlated with

the mode activity during ECH and ECCD.
In the presence of suffi ciently high central ECH and ECCD power and

kink distortion of the plasma core the direction of the particle convection can
reverse, bocoming outward directed.
The structures observed by X rays emmissivity show

m = 1 , n = 1

The density:
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Normal sawtooth: Collapse of peaked density profile

With PECH > 0.8 MW


Sudden flattening
of hollow density

due to sawtooth crash




The hollow profile
is due to outward flux
during ramp-up


Note: when PECH is increased beyond a threshold, there is a high

Temeperature gradient in the center. In the same time there is a periodic per-
turbation in the form of rotating coherent convective structures at a surface
of inversion. These structures act to the transfer of energy between parts of
plasma: core and outward. We have the conditions for inverse Ranque-Hilsch
effect and the two elements (∇Te and convective structures) induce and sus-
tain a poloidal rotation, like in a vortex tube. The poloidal rotation will
modify the density profile. The example is the Japanese machine HYPER-I,
where there is a hollow density profile and a strong poloidal rotation. It is
possible that the inner core of the plasma to rotate poloidally in the opposite
direction compared with the poloidal rotation of plasma of the edge. Then
the factor that will model the density profile is

1(
ρeffs

)2 =
1

ρ2
s

(
1− vdia

u

)
→ 0

which means that the gradient of the density is correlated with the poloidal
velocity of rotation. End.
They find that there is a threshold for the power of ECH for reversing

the direction of the particle convection.
Note. This is probably a threshold in the temperature gradient, like in

the case of Ranque-Hilsch vortex tube. End.
There is a rotating m = 1 structure with frequency ≈ 5 kHz.
In Fig.5 of their article it is shown

1. an inverted density profile, indicating outward-directed particle con-
vection flux

2. a highly peaked temperature profile

3. a dispalcement indicating the existence of a structure (mode)

In other machines: flattening of density profiles in the presence of localized
core heating. Note the same physical picture can be an explanation: poloidal
rotation arising from inverse Ranque-Hilsch effect.
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They note correlation between density gradients and Temperature gradi-
ents.
Outward convection has been seen only in the presence of m = 1 mode.

The angular momentum transport is a front propagation
In Burrell 1996 it is discussed the change in the turbulence when the

input power is rised or decreased. Experimental results show that the effect
of E ×B rotation propagates from the core to the boundary when the input
power is increased. It is known that the shear of the E × B rotation has an
influence on the linear growth rate of the instabilities and also has an effect
on the radial correlation length of the turbulence. The rotation transported
(which is a spatial = radial redistribution of the vorticity profile in the plasma
cross-section) modifies the background while it propagates. Therefore the
propagation is nonlinear.
The transport of angular momentum is a front propagation.
The first part of the radially-propagating profile of the vorticity affects the

background and modifies the local fluctuations. The parts of the propagating
profile which come after that will find more convenient conditions to induce
locally rotations in the background.
There may be also a synergetic effect:
the arrival of the “rotation state”will induce a change in the instability

growth rate and only waves with long scale on poloidal direction can be
excited. They have very small ω and this means that they can be easily
converted into rotation of the plasma.

In Rice NF2010 it is explained that inside the ITB that is formed by
off-axis ICRH the temperature profile and the density profile (more peaked)
are changed and the Ion Temperature Gradient instability is no more ex-
cited. The effect propagates from the core to the exterior when the point of
resonance ICRH is moved toward exterior.

In the paper Ambipolarons Morrison it is shown for a bumpy torus
that there is propagation of a kink of electric field. The equation is derived
from Hastings approach. However there it is question of two states that
the electric field can have. The front is just the transition between these two
states.

12 Equilibrium poloidal rotation (Hazeltine)

The equilibrium poloidal rotation is determined by the gradient of tempera-
ture.
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The equation is

∂f

∂t
+ (un̂ + vD) ·∇f +

ea
ma

∂φ

∂t

∂f

∂ε
= C (f)

where the term with time dependent potential φ is NOT related to the waves
in plasmas but to decay of rotation.

13 Fluid equations for plasma rotation

13.1 The Pfirsch Schluter current

The parallel current arising from the non-zero divergence of the diamagnetic
flow

∇ · j = 0

∇⊥ · j⊥ +∇‖ · j‖ = 0

the taking the perpendicular current as resulting from the diamagnetic flows
of electrons and ions, the parallel gradient can be written as

∇‖ · j‖ = −∇⊥ · j⊥
1

qR

∂

∂θ
j‖ = −∇⊥ ·

(
e

1

mΩ
n̂×∇p

)
= −∇⊥ ·

(
e

1

|e|B n̂×∇p
)

Let us look to the last term. It is the perpendicular divergence of the dia-
magnetic flow (this reminds us of the Pfirsch-Schluter current).
Note that the operator of parallel derivative is

∇‖ ∼
1

qR

∂

∂θ

and that the perpendicular current j⊥ is the diamagnetic current, of ions +
electrons. End.
This is a neoclassical effect.
It is the magnetic field that has a space variation in the perpendicular

direction. First we have

n̂×∇p =

∣∣∣∣dpdr
∣∣∣∣ (n̂× êr)

= −êθ

∣∣∣∣dpdr
∣∣∣∣
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Then, restricting to the gradient of the part that contains B, we use the
expression of the gradient operator expressed in the geometry of the toroidal
region.
This part is repeated later in this text.

B =
B0

1 + ε cos θ

∇·
(

êθ
B0

B

)
= ∇· [êθ (1 + ε cos θ)]

In the orthogonal coordinates (r, θ, ϕ) we have the element of distance:

dl2 = (dr)2 + r2 (dθ)2 + (R0 + r cos θ)2 dϕ2

which gives the coeffi cients

h1 = 1

h2 = r

h3 = R0 + r cos θ

Then the divergence of a vector a is written

∇ · a =
1

h1h2h3

(
∂

∂r
(h2h3a1) +

∂

∂θ
(h1h3a2) +

∂

∂ϕ
(h1h2a3)

)
which gives

∇· [êθ (1 + ε cos θ)] =
1

r (R0 + r cos θ)

∂

∂θ
((R0 + r cos θ) (1 + ε cos θ))

=
1

r (R0 + r cos θ)
R0

∂

∂θ

[
(1 + ε cos θ)2]

= ε
(−2 sin θ)

r
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From this result we get

−∇⊥ · j⊥ = −∇⊥ (dia) =

= −∇⊥ ·
(
e

1

mΩ
n̂×∇p

)
= −∇⊥

[(
e

1

mΩ

)
(−êθ)

∣∣∣∣dpdr
∣∣∣∣]

= ∇⊥·
(

êθ
B0

B

)
1

B0

∣∣∣∣dpdr
∣∣∣∣

= ε
(−2 sin θ)

r

1

B0

∣∣∣∣dpdr
∣∣∣∣

=
r

RB0

∣∣∣∣dpdr
∣∣∣∣ ∂

r∂θ
(2 cos θ)

NOTE ON An alternative calculation

−∇⊥ ·
(
e

1

mΩ
n̂×∇p

)
= −∇⊥ ·

[(
e

1

mΩ

)(
−êθ

∣∣∣∣dpdr
∣∣∣∣)]

Taking factor |dp/dr| we have to calculate

∇⊥ ·
(
e

1

mΩ
êθ

)
= ∇⊥ ·

(
1

B
êθ

)
= ∇⊥

(
1

B

)
· êθ +

1

B
(∇⊥ · êθ)

The first term is

∇⊥
(

1

B

)
= − 1

B2
∇⊥B

= − 1

B2
∇⊥

(
B0
R0

R

)
= − 1

B2
B0R0

(
− 1

R2
∇⊥R

)
=

B0

B2

R0

R2
êR
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We take separately

∇⊥R =

(
êr

1

hr

∂

∂r
+ êθ

1

hθ

∂

∂θ
+ êϕ

1

hϕ

∂

∂ϕ

)
(R0 + r cos θ)

=

(
êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êϕ

1

R0 + r cos θ

∂

∂ϕ

)
(R0 + r cos θ)

= êr cos θ + êθ (− sin θ)

= êR

Here we should decide if the angle θ is measured from the equatorial plane
or from the symmetry axis of the torus. Above it was considered that θ is
measured from the equatorial plane towards the higher z direction.

1

B2

B0R0

R2
= B0R0

(1 + ε cos θ)2

B2
0

1

(R0 + r cos θ)2 =
1

B0R0

The first term is then

∇⊥
(

1

B

)
· êθ =

1

B0R0

êR · êθ =
1

B0R0

(− sin θ) =
1

B0R0

∂

∂θ
(cos θ)

The second term is 1
B

(∇⊥ · êθ) and contains the divergence of the versor

∇⊥ · êθ

=
1

hrhθhϕ

{
∂

∂r
[hθhϕ (êθ)r] +

∂

∂θ
[hrhϕ (êθ)θ] +

∂

∂ϕ

[
hrhθ (êθ)ϕ

]}
=

1

r (R0 + r cos θ)

{
∂

∂θ
[hrhϕ (êθ)θ]

}
=

1

r (R0 + r cos θ)

∂

∂θ
[(R0 + r cos θ)]

=
1

R0 + r cos θ

∂

∂θ
(cos θ)
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The perpendicular divergence of the diamagnetic current is

−∇⊥ · j⊥ = −∇⊥ ·
(
e

1

mΩ
n̂×∇p

)
= −∇⊥

(
e

1

mΩ

)
·
(
−êθ

∣∣∣∣dpdr
∣∣∣∣)

=

∣∣∣∣dpdr
∣∣∣∣ [ 1

B0R0

∂

∂θ
(cos θ) +

+
1

B

1

R0 + r cos θ

∂

∂θ
(cos θ)

]
=

∣∣∣∣dpdr
∣∣∣∣ 1

B0R0

∂

∂θ
(2 cos θ)

and obtain the same result.
END OF NOTE on the alternative calculation

Equalizing the two sides of the current conservation equation

1

qR

∂

∂θ
j‖ = − r

RB
e

(
dp

dr

)
∂

r∂θ
(2 cos θ)

Integrating on the poloidal angle θ:

J‖ = −ε 2

Bθ

dp

dr
cos θ

There is a poloidal electric field related to this current

E‖ = ηjPS‖

from this we want to find Eθ =
B

Bθ

E‖

Eθ =
1

σ‖

B

Bθ

(
−ε 2

Bθ

dp

dr
cos θ

)
It is the projection on θ (poloidal) of the relationship E‖ = J‖/σ‖, with the
factor of projection

E‖ (B/Bθ) = Eθ

Formula

n̂× êr =
Bϕ

B
êθ +

Bθ

B
êϕ
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Formula
Bθ

Bϕ

=
ε

q(
Bϕ

B

)2

= 1− ε2

q2

qR =
rBϕ

Bθ

Formula

vionneo ·∇ψ = −mi

|e|
v‖
qR

∂

∂θ

[
v‖R

(
1− ε2

q2

)]
Now, since

∇ψ = 2πRBθêr

we have the radial component of the drift velocity

vD,r ≡ vionneo
∣∣
r

=

(
1

2πRBθ

)
(−)

mi

|e|
v‖
qR

∂

∂θ

[
v‖R

(
1− ε2

q2

)]
' −mi

|e|
v‖

2πRBϕ

∂

r∂θ

(
v‖R

)
∂v‖
∂θ

= − 1

miv‖
µεB0 sin θ

The factor sin θ appears in this expression due to the projection of the
vertical drift velocity of the ions due to the curvature and∇B terms, on the
local radial direction perpendicular on the circular flux surface. This is the
left-hand side term, where it is the drift of particles vD,r.

In Rosenbluth Hinton alpha the following formula is used

vd ·∇ψ = Iv‖n̂ ·∇θ
∂

∂θ

(v‖
Ω

)
where

I = RBϕ

and we recognize

∂

∂θ

(
v‖
Ωi

)
=

mi

|e|
∂

∂θ

(
v‖

B0/h

)
=

mi

|e|
1

R0B0

∂

∂θ

(
v‖R

)
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We have

∇‖θ = n̂ ·∇θ =
1

r
cos (angle of ∇θ and n̂)

=
1

r

Bθ

B
=
RBθ

rB

1

R

=
1

qR

vd ·∇ψ = Iv‖n̂ ·∇θ
∂

∂θ

(v‖
Ω

)
= I

v‖
qR

∂

∂θ

(v‖
Ω

)
vd,r =

1

RBϕ

RBϕ

v‖
qR

∂

∂θ

(v‖
Ω

)
=

v‖
qR

∂

∂θ

(v‖
Ω

)
The bounce average of the radial component of the drift velocity is zero

(vd ·∇ψ) = 0

Shats. In the paper PRL 2002 Shats uses the equation

∂vθ
∂t

= − ∂

∂r
(ṽrṽθ)−

JrBϕ

mn
− µvθ

where the Reynolds stress is the first term. This was probably for zonal flows.

13.2 Su Yushmanov Horton Dong: The poloidal rota-
tion

The sheared rotation due to combined effect of

1. Reynolds stress created by drift waves

2. Stringer mechanism created by θ-dependent Reynolds stress

3. damping by Magnetic Pumping

Here we must add:
Stringer torque due to the flux of ions from NBI
torque due to j × B where j comes from loss of NBI ions and from

expansion of bananas.

The following formulas are from Su Yushmanov Dong Horton PoP 1
(1994) 1905.
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The two components of the plasma rotation are defined such as to be
function of the magnetic surface label, ψ. They are obtained first by projec-
tion on parallel n̂ = B/B and on perpendicular direction êr × n̂, where the
latter versors are obtained from ∇ψ/ (2πRBp) and from B/B,

u‖ =
〈B · v〉
B0

u⊥ =
B0

2πR0Bθ

〈(
∇ψ ×B

B2

)
· v
〉

where
B =R0Bϕ∇ϕ+

1

2π
(∇ϕ×∇ψ)

B0 =
〈
B2
〉1/2

=
〈
B2
θ +B2

T

〉1/2

The average on the magnetic surface is

〈A〉 =

∫
A dθ
B·∇θ∫
dθ

B·∇θ

NOTE The same is used by Hinton Rosenbluth toroidal momentum
input)
The mean flow velocity is

v =
B

B0

(
u‖ −

BT

Bθ

u⊥

)
+ u⊥

B0

R0Bθ

R2∇ϕ

The first term is the incompressible plasma flow along the magnetic field
lines.
The second term is the rigid body rotation of the plasma in the mag-

netic surface. This term does not contribute to the plasma viscosity. The
plasma viscosity force is function of only the combination

u‖ −
BT

Bθ

u⊥

The connection between the perpendicular plasma velocity u⊥ and the
radial electric field is given by

u⊥ = −
(

2πB0

R0Bθ

)〈
R2B2

θ

B2

〉(
dΦ

dψ
+

1

en

dP

dψ

)
The velocity is defined such that positive Er gives positive u⊥ which is the
rotation in the ion diamagnetic direction.
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The factor 2πRBθ comes from ∇ψ which is introduced to make possible
the derivatives of Φ and p to ψ instead of r.

From momentum balance (this is Su, Yushmanov et Austin)

nm
(
1 + 2q̂2

) ∂u⊥
∂t

= −FR
⊥ − FR

˜ − F neo − F a
⊥

nm
∂u‖
∂t

=
Bθ

BT

F neo − FR
‖ − F a

‖

where the forces with superscript R are due to the Reynolds stress in a
turbulence.

The toroidal geometry is represented in the value of the quantity q̂

2q̂2 =

(
BT

Bθ

)2(
1− 1

〈R2〉 〈R−2〉

)
For large aspect ration, ε� 1,

2q̂2 ≈ 2q2

We also note

2q̂2 =
(q
ε

)2
(

1− 1

〈h2〉
〈

1
h2

〉)
Also used by ambipolarity Hirshman.
See variation on surface NOTES .
See Novakovskii for kinetic poloidal damping and GAM modes.
See Hassam for the fluid derivation of the inertia factor (1 + 2q2).

The velocity is taken as a sum of the mean velocity

v =
B

B0

(
u‖ −

BT

Bpol

u⊥

)
+u⊥

B0

R0Bpol

R2∇φ

and a fluctuating velocity, ṽ which will give the Reynolds stress.
In the expression of the mean velocity flow there are two terms. The first

B

B0

(
u‖ −

BT

Bpol

u⊥

)
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represents the incompressible plasma flow along the magnetic field lines.
The second

u⊥
B0

R0Bpol

R2∇φ

is a rigid body rotation within the magnetic surface. It has a direction êϕ
which is toroidal. This picture is also mentioned by Hassam Kulsrud who
say that the motion of plasma consists of

1. the free motion along the magnetic flux tube

2. the motion of the flux tubes themselves

The second part of the velocity (the rigid body rotation) does not partic-
ipate to the viscosity which finally will damp the poloidal rotation.
the viscosity will only depend on the combination exhibited in the first

term

u‖ −
BT

Bpol

u⊥

NOTE that the expressions for velocity components are simpler com-
pared with those of the paper Yushmanov Horton electric field generation
at the edge due to loss of hot ions.

The Reynolds stress produces terms that are marked by the upperscript
R

FR
‖ =

〈
nm

B

B0

· [(ṽ ·∇) ṽ]

〉
FR
⊥ =

〈
nm

B0 (∇ψ ×B)

2πR0BpolB2
· [(ṽ ·∇) ṽ]

〉
FR
∼ =

〈
nm

BT

Bpol

(
B2

0

B2
− 1

)
B

B0

· [(ṽ ·∇) ṽ]

〉
The term of neoclassical damping effect on poloidal rotation is

F neo = − BT

B0Bθ

〈
B2 (B ·∇)

P‖ − P⊥
2B2

〉
is the viscosity of the plasma when it is pushed along nonuniform magnetic
field (magnetic pumping effect).
This expression of the damping force as proportional with the difference

between the two pressures P‖− P⊥ is also used by Rosenbluth Hinton for
the alpha-particle - induced rotation.
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The additional forces are related to the ripple or to the atomic processes.
The two components are

F a
⊥ =

〈[
B0

2πR0Bθ

∇ψ ×B

B2
+
BT

Bθ

(
B2

0

B2
− 1

)
B

B0

]
· Fa

〉

F a
‖ =

〈
B

B0

· Fa

〉
The neoclassical viscosity is

F neo = −3µneo
BT

B2
0

〈(
(B ·∇)B

B

)2
〉(

u‖ −
BT

Bθ

u⊥ − kν∗
1

eBθ

dTi
dr

)
where the neoclassical viscosity coeffi cient is (for velocities which are much
less then the sound velocity)

µneo ≈ R0q
nmvthν∗
1 + ν∗

1

1 + ε3/2ν∗

ν∗ = ν ε3/2 1

vth/ (qR)

and ν is the ion collision frequency.This is also in the preprint of Stacey.
See also Novakovskii.
The coeffi cient kν∗ describes the relative effect of the parallel heat flux

on the longitudinal viscosity

kν∗ = 1.17 for ν∗ � 1
kν∗ = −0.5 for 1� ν∗ � ε−3/2

kν∗ = −2.1 for ν∗ � ε−3/2

The equilibrium value of the poloidal rotation

uθ = −uneo

= −kν∗
1

eBT

dTi
dr

(
Ln
ρscs

)
The equilibrium poloidal velocity is determined by the ion temperature gra-
dient and it is

ion diamagnetic direction for ν∗ > 1, kν∗ < 0
electron diamagnetic direction for ν∗ < 1, kν∗ > 0
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There are forces due to the nonambipolar processes (like: charge ex-
change, ion-direct-loss, neutral beams). They are represented in a simplified
form:

F a
⊥ = nmνa⊥ (u⊥ − ua⊥)

F a
‖ = nmνa‖

(
u‖ − ua‖

)
The resulting equations governing the plasma perpendicular and parallel
motions are (

1 + 2q2
) ∂u⊥
∂t

= −νnc
(
u⊥ −Θu‖ + unc

)
−

−νa⊥ (u⊥ − ua⊥)−

− ∂

∂x
〈ṽxṽ⊥〉 −

−2q

〈
cos θ

∂

∂x

(
ṽxṽ‖

)〉
∂u‖
∂t

= −νncΘ
(
−u⊥ + Θu‖ − unc

)
−

−νa‖
(
u‖ − ua‖

)
−

− ∂

∂x

〈
ṽxṽ‖

〉
where

Θ =
r

qR
=
Bθ

Bϕ

� 1

unc = kν∗
1

eBϕ

dTi
dr

(
Ln
ρscs

)
is the equilibrium velocity of the poloidal velocity, which is

uθ = u⊥ −Θu‖

The toroidal velocity is

uϕ = u‖ + Θu⊥

From the same paper of Su, Yushmanov,

νnc =
3µnc

nm

B2
T

B2
θ

1

B2
0

〈(
(B ·∇)B

B

)2
〉

≈ 3

2

B2
T

B2
θ

√
ε

1 + ν∗

(
νLn
cs

)
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or

vnc = 3µnc
1

nm

(q
ε

)2 1

B2
0

〈(
∇‖B

)2
〉

=
3

2

(q
ε

)2
√
ε

1 + ν∗

(
νLn
cs

)
S0 =

Bθ

BT

unc = kν∗
c

eBT

dTi
dr

(
Ln
ρscs

)

A useful approximation

∂

∂ψ
=

1

2πRBθ

∂

∂x

for ε� 1.

A conclusion from this paper by Su Yushmanov Dong Horton.
The ratio of

1. the mean poloidal velocity

u⊥ = 0.44 vdia,e

and

2. the mean toroidal velocity

u‖ = 3.5 vdia,e

is about 1/9.
Possible rephrase: a radial electric field has been established at equilib-

rium. It produces poloidal and toroidal rotations. Even if the toroidal mag-
netic field (∼ poloidal rotation) is much higher than the poloidal magnetic
field (∼toroidal rotation) the inertia of plasma against poloidal rotation is
high and the ratio is actually reversed, favorable for toroidal rotation. Plus,
the magnetic damping acting against the poloidal rotation.
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13.3 Toroidal and poloidal projections of the plasma
velocities (Shaing)

This set is used by Shaing in [17].
Apparently this includes the resonance broadening (of the resonance u‖ =

0) due to the time variation of the radial electric field, when the poloidal
rotation is damped, on a time scale of τ ii. This also appears in the treatment
of Lebedev, Diamond et al.
The toroidal component:

∂

∂t

〈
R2∇ϕ · nV

〉
+

1

M

〈
∂E

∂t
·∇ψ

〉
= −νeff

〈
R2∇ϕ · nV

〉
−
〈
R2∇ϕ ·∇ · π

〉
− 1

M

〈
R2∇ϕ · Jr ×B

〉
and the poloidal component

Meff
∂

∂t

〈nV ·Bθ〉
〈n〉 − I

〈R2n〉
1

M

〈
∂E

∂t
·∇ψ

〉
=

I

〈R2n〉
1

M
〈Jr ·∇ψ〉

− 〈B ·V ·∇V〉 −
〈

B ·∇ · π
nM

〉
−νeff 〈Bθ ·V〉

NOTE
The term

1

M

〈
∂E

∂t
·∇ψ

〉
is the time variation of the radial electric field.

ε0

(
1 +

c2

v2
A

)
∂Er
∂t

= e (Γi − Γe) + ...

This is polarization of plasma.
END OF NOTE

Here the magnetic field is

B = ∇ϕ×∇ψ + I∇ϕ

Bθ = ∇ϕ×∇ψ

I = R2B ·∇ϕ
= RBϕ
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The effective poloidal inertia

Meff = 1 + Cq2

where

C =

{
2 for Mp � 1

2/ε for Mp ' 1

and the Mach number is defined as:

Mp =
Vθ
vth,i

B

Bθ

NOTE
Since Bθ has radial variation, there is a radius where Mp is close to 1.

There the inertia against the poloidal rotation grows unlimitted. It is the
shock. Rosenbluth Hazeltine Lee 1971 and Friedberg.

13.4 Fluid rotation, radial current and poloidal varia-
tion of parameters (Rozhansky Tendler)

The full plasma momentum balance can use the ion velocity in the inertail
term

nimi
dui
dt

= −∇ (pi + pe)−∇ · πi + j×B + F

and two projections are made

parallel, and

toroidal

• parallel with the magnetic field line〈
B·nimi

dui
dt

〉
= −〈B ·∇ · πi〉NEO

−〈B ·∇ · πi〉AN

• toroidal projection

〈j〉 =

〈
1

B2
BT · nimi

dui
dt

〉
+

〈
1

B2
BT ·∇ · πi

〉NEO
+

〈
1

B2
BT ·∇ · πi

〉AN
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and it is surface averaged

〈f〉 =
1

2π

∫ 2π

0

hdθ f

where h = 1 + ε cos θ

At stationarity and without anomalous transport

〈B ·∇ · πi〉NEO = 0

here

πi =
(
p‖i − p⊥i

)(
n̂n̂− 1

3
I

)
(Chow Goldberger Law).
The divergence of this tensor

(∇ · π)k =
1√
|g|

∂

∂xi

(√
|g|πik

)
− 1

2

∂gij
∂xk

πij

g11 = 1

g22 = r2

g33 = (1 + ε cos θ)2

It is assumed that the anisotropy of the pressure is only dependent on
the poloidal angle θ

p‖i − p⊥i ∼ function of θ
and

BT = BT
êϕ√
|g|

it is obtained

〈j〉 =

〈
1

B2
BT ·∇ · πi

〉NEO
= 0

This is a purely neoclassical result: there is no radial current at station-
arity and in the absence of anomalous contributions to transport.

The equation of continuity

∇· (nui) = 0
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leads to

uiθ =
Vθ

1 + ε cos θ
uiϕ = uϕ − 2qVθ cos θ

+εuϕ cos θ + 2εqVθ

ui‖ = uiϕ + Θuiθ

This is for fluid.

Kinetic.

∂fj
∂t

+ Vj ·∇fj

+
·
V ‖j

(
∂fj
∂V‖j

)
+
·
V ⊥j

(
∂fj
∂V⊥j

)
= St (fj)

for j = e, i.
The velocities are

Vj = − 1

Ωj

1

R

(
V 2
⊥j

2
+ V 2

‖j

)
(êθ cos θ + êr sin θ)

+
−∇φ× n̂

B
+V‖j ê‖

+urêr

where ur is the fluid radial velocity of the ions, due to diffusion and convec-
tion.
In this ur enters also the prompt loss of NBI ions.
The guiding center velocities are

dV‖j
dt

= Θ
1

B

(
− dφ

rdθ

)
−Θ

1

R

V 2
⊥j

2
sin θ +

1

R
V0V‖j sin θ

dV⊥j
dt

= Θ
1

R

V‖jV⊥j
2

sin θ +
1

R

V0V⊥j
2

sin θ

where, according to a definition with negative electric field

V0 =
1

B

dΦ0

dr
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Note we should recognize the structure: the term Θ 1
B

(
− dφ
rdθ

)
is the pro-

jection along the magnetic line : ()θ ×
Bθ
BT
of the poloidal velocity produced

by the radial electric field. But it is question of the variation of the potential
on the magnetic surface, φ (θ).

To solve the drift-kinetic equation we expand fj in two terms, the equi-
librium function and the correction that shows the variation on the poloidal
direction

fj = f0j (r) + f1j (r, θ)

and
Φ = Φ0 + Φ1 (r, θ)

The equation is linearized and it is taken

νi → 0

then

f1j =

[
PV

(
1

V0 + ΘV‖j

)
+ πδ

(
V0 + ΘV‖j

) ∂
∂θ

]
Âj f0j

the operator is

Âj ≡
{
ej
mj

Φ1

[
Θ

∂

∂V‖j
+

1

Ωj

∂

∂r

]
−
(
V 2
⊥j

2
+ V 2

‖j

)
1

Ωj

ε cos θ

−mj

(
V 2
⊥j

2
+ V 2

‖j

)
ε

1

Tj
cos θ

}
and the equilibrium distribution function is shifted by the toroidal velocity

f0j =
n0

(2πTj/mj)
3/2

exp

[
−
(
V‖j − uϕ

)2

2Tj/mj

−
V 2
⊥j

2Tj/mj

]

With this distribution function we calculate the density correction in
order 1 and impose neutrality

n1 =

∫
f1edV

=

∫
f1idV
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To calculate the pressure tensor

p‖i =

∫
2πV‖iV⊥idV‖idV⊥i V‖i fi

p⊥i =

∫
πV 2
⊥idV‖idV⊥i V⊥i fi

Then the parallel viscosity in neoclassical expression is

〈B ·∇ · πi〉NEO

=
√
πnε2√mi

√
TiB0

Vθ − V NEO
θ√

2r

where

V NEO
θ =

[
1

2

]
× 1

eB0

dTi
dr

(Hazeltine)

The condition of neutrality imposed to the first order correction to the
density variation on the magnetic surface leads to

eφ1

Te
=
√
πnε
√
mi

√
Ti sin θ

√
2B0Θ

(
1 +

Te
Ti

)(
Vθ + V NEO

θ

)
See for comparison the result of Rosenbluth Hazeltine Lee.

Now there is a variation of the electric potential on the magnetic surface,
along the poloidal direction, φ1 (θ). This makes a contribution to the drift
velocity

(VD)r = − 1

Ωci

1

R

(
V 2
⊥i
2

+ V 2
‖i

)
− 1

e

1

B0

∂φ1

r∂θ

and the radial current is

〈j〉 =

〈∫
2πdV‖iV⊥idV⊥i (VD)r (f0i + f1i)

〉

the condition
|Vθ|
Θ
�
√
Te
me

means that the parallel velocity resulted from poloidal rotation
(
Vθ + ΘV‖ ∼ 0

)
is much smaller than the thermal velocity. Then the response of the electrons
is adiabatic

n1

ne
=
|e|φ1

Te
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Then one can use the distribution function to order 1 and obtain the density
n1 perturbation on the magnetic surface and equalize it with the Boltzmann
distribution. It results the harmonic components of the density, i.e. the cos θ
and the sin θ components.

n1

ne
= n∗c cos θ + n∗s sin θ

After integration of f over the velocity space

n∗c =
1

∆

(
−2ε

{
2α2 + 1

2α
D (α)− α

}
×
{

1 +
Te
Ti

[1−D (α)]

}
+
Te
Ti
πεα2

(
2α2 + 1

)
exp

(
−2α2

))

n∗∗s =
1

∆

({
1 +

Te
Ti

[1−D (α)]

}(
2α2 + 1

)
+2

Te
Ti

[
2α2 + 1

2α
D (α)− α

])
×
√
πεα exp

(
−α2

)
where

∆ =

{
1 +

Te
Ti

[1−D (α)]

}2

+πα2 exp
(
−2α2

) T 2
e

T 2
i

α ≡ V0

Θcs

This variable α is the ratio of the poloidal velocity V0 to the poloidal projec-
tion of the sound speed. It is defined also in Rosenbluth Hazeltine LEE.
There it defines the critical state where the acoustic waves in parallel direc-
tion have the same velocity as the plasma which rotates poloidally. Shock is
expected.
And

cs =

√
2Ti
mi
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In theReviews of Plasma Physics 19 Rozhansky Tendler the Daw-
son integral is

D (α) = 2α exp
(
−α2

) ∫ α

0

exp
(
t2
)
dt

Now, because

V0 ≡
1

B0

dΦ

dr
= VE

is the poloidal velocity due to the electric field, and Θcs is much larger than
ΘV‖ the parallel velocity projected on the poloidal direction, we have

α ≡ VE
Θcs
� VE

ΘV‖
∼ 1

then
α� 1

If however
α ∼ 1

then
n1

n
∼ ε

When
α� 1

which means that the poloidal rotation is much higher than the projected
parallel velocity, then

n1 (θ)

n0

= −2ε cos θ

[
1 +

1

α2

(
1 +

Te
2Ti

)]
when α� 1.

Now one can calculate the harmonic component of the parallel flow ve-
locity

u
(1)
‖i =

1

n

∫
2πV‖idV‖i V⊥idV⊥i f1i

and in first order in ε one obtains

u
(1)
‖i (θ) = −V0

Θ

(
2ε cos θ +

n1

n

)
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13.5 Neoclassical ion transport in rotating plasmas (Hin-
ton Wong)

This is Hinton Wong PF1985
The text is also in plasma general derivation of drift kinetic eq.

The transport of heat is OK but of momentum is more than an order of
magnitude in error.
The theory must be improved.
Effects: Coriolis and Centrifugal Force.

A temperature gradient drives an angular momentum flux.
A gradient of the toroidal angular velocity drives a heat flux.

Method
expansion in small gyroradius of the Fokker Planck equation in the system

of reference moving with the plasma.

The electron parallel momentum

∇‖
(

lnne −
eΦ0

Te

)
= 0

and the density of electrons

ne = Ne (ψ) exp

(
eΦ̃0

Te

)
the poloidally varying part of the potential is determined from neutrality.

The ion parallel momentum

∇‖
(

lnni +
eΦ0

Ti
− miω

2R2

2Ti

)
= 0

(gradient of pressure, electric field, centrifugal force) This is the usual parallel
balance : −∇‖pi balanced by the electrif field eE‖, witout collisional friction,
BUT, in addition, the centrifugal force v2/v2

th,i where v = ωR.
Integrated, gives

ni = N (ψ) exp

(
− Ξ

Ti

)
where

Ξ = eΦ̃− miω
2R2

2
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The centrifugal force is derived from a potential, miv
2/2, for v = ωR, and

this potential is combined with the electrostatic potential.
Using charge neutrality

N (ψ) = Ne (ψ) exp

[
−miω

2 〈R2〉
2Ti

]
and the potential variation on the surface

eΦ̃0

Te
=
miω

2 (R2 − 〈R2〉)
2 (Te + Ti)

the ion density is shifted outward in major radius by the centrifugal forces
then, for neutrality, the plasma must develop an electrostatic field that

imposes to electrons to shift and ensure neutrality

The linear operator that occurs at the expansion of the Fokker Planck
equation is the convective derivative of the distribution function plus the
modified convection in velocity space

Λf = (v′ + u0) ·∇′f

−
(
e

m
∇φ0 +

∂u0

∂t0
+ [(v′ + u0) ·∇] u0

)
· ∂f
∂v′

where the velocity is in the rotating frame is

v′ = v − u0 (x, t)

The first term is the convection of the distribution function by the velocity
v which now is written by its composition: the rotation support, u0 and the
relative velocity v′.

We note that in the acceleration term we have

− e

m
∇φ0 = E the electric field acceleration

−
(
∂u0

∂t0
+ [(v′ + u0) ·∇] u0

)
=

−
(
∂u0

∂t
+ (v ·∇) u0

)
= −du0

dt
acceleration of the support rotation

One must include here the gyration part of the velocity

v′ = n̂v‖ + v⊥

= n̂v‖ + v⊥ (ê1 cos ζ + ê2 sin ζ)
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which implies the transformations

∂f

∂v′
= n̂

∂f

∂v‖
+

v⊥
v⊥

∂f

∂v⊥
+

n̂× v⊥
v2
⊥

∂f

∂ζ

and

∇′f = ∇f + (∇ · b) · v⊥
(
∂f

∂v‖
−
v‖
v⊥

∂f

∂v⊥

)
+ [(∇·ê1) cos ζ + (∇·ê2) sin ζ] · v′

v⊥

∂f

∂ζ

Start again.
This is also in plasma general derivation drift kinetic eq.

in the rotating frame
v′ = v − u0 (x, t)

where

u0 = ωRêϕ (toroidal)

+FB (rigid body)

the velocity is toroidal and includes a term which is the rotation of a surface
as a rigid object, FB.

ω = −∂Φ−1

∂ψ

This is the frequency of rotation, ω ∼ v/R where v ∼ E/Bθ (since v is
toroidal, the magnetic field is the poloidal component) and E ≡ radial, E ∼
−∂Φ/∂r = (−∂Φ/∂ψ) × (∂ψ/∂r). We have

|∇ψ| = RBθ

then

E ∼ −∂Φ

∂ψ
|∇ψ| = −∂Φ

∂ψ
RBθ

v ∼ E

Bθ

= −∂Φ

∂ψ
R

from where

ω ∼ v

R
= −∂Φ

∂ψ
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We note that the rotation is considered sustained by an electrostatic poten-
tial Φ which occurs in order −1. Higher orders correspond to variations on
surfaces.

nu0 =

∫
d3v vf

and
u0 ·∇ψ = 0 (in surface)

v′ = relative to rotating frame

= n̂v‖ + v⊥

= n̂v‖ + v⊥ (ê1 cos ζ + ê2 sin ζ)

ζ ≡ gyroangle

which implies the transformations

∂f

∂v′
= n̂

∂f

∂v‖
+

v⊥
v⊥

∂f

∂v⊥
+

n̂× v⊥
v2
⊥

∂f

∂ζ

and

∇′f = ∇f + (∇ · b) · v⊥
(
∂f

∂v‖
−
v‖
v⊥

∂f

∂v⊥

)
+ [(∇·ê1) cos ζ + (∇·ê2) sin ζ] · v′

v⊥

∂f

∂ζ

The invariants, redefined in the rotating frame

µ =
v2
⊥

2B

ε =
1

2

(
v2
‖ + v2

⊥
)

+
eΦ̃

m
− ω2R2

2

The part of the distribution function that depends on the gyroangle ζ is

f̃1 =
v′ × n̂

Ω
·∇ψ

[
N ′

N
+
e

T
〈Φ0〉′

+

(
mε

T
− 3

2

)
T ′

T
+
m

T

(
Iv‖
B

+ ωR2

)
ω′
]

+
v′ v′ : (ê1ê1 − ê2ê2) |∇ψ|2

2ΩBv2
th,i

ω′ f0
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The detailed form

(v′ × n̂) ·∇ψ = v‖ sin ζ |∇ψ|

v′ v′ : (ê1ê1 − ê2ê2) = v2
⊥ cos (2ζ)

The drift velocity is

vD =
1

Ω
n̂×

(
µ∇B + v2

‖ (n̂ ·∇) n̂ +
e

m
∇Φ0

−ω2R centrifugal drift v2/R

+2ωêz × n̂v‖
)

Coriolis

NOTE
Recall the meaning:
effect Coriolis is the drift that a particle suffers when it moves from the

North pole toward the Equator, on a planet that has Ω rotation around the
axis.

vCoriolisD = 2Ω× v

The drift is felt in the system of reference that rotates with planet, where
the initially unperturbed trajectory North-Equator (a meridian) is static.
END

NOTE
A decision is taken
To consider that the rotation velocity

u0

is associated to a vectro of angular rotation

ωêz ≡ vertical on the equatorial plane

This is a major restriction, the rotation is toroidal.
END

The new terms

• the centrifugal force (including the mass factor m)

mω2R

The drift resulting from this term is

1

Ω
n̂×

(
−ω2

)
R = vertical
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• the Coriolis term (including the mass factor m)

2mv‖n̂× ωêz

The drift resulting from this term is

1

Ω
n̂×

(
2v‖ω

)
(n̂× êz) =

2v‖ω

Ω
[n̂ (n̂ · êz)− êz]

≈ −
2v‖ω

Ω
êz

= vertical

in the rotating reference system.
Comparing the two new terms

centrifugal
Coriolis

∼ ω2R

2v‖ω
∼ 1

2

ω

v‖/R

where v‖ = velocity of the particle. The ratio can be put in connection with
the definition of a Mach number which compares the speed of rotation with
the speed of sound.

the formulas
n̂×∇ψ = In̂−BRêϕ

(n̂ ·∇) n̂ · êϕR = In̂ ·∇
(

1

B

)
ωêz × n̂ · êϕR = ωn̂ ·R

lead to

vD ·∇ψ =
m

e
v‖n̂ ·∇

(
Iv‖
B

+ ωR2

)
where

∇ ≡∇ε=ct,µ=ct

and

v‖ =

{
2

[
ε− µB − e

m
Φ̃0 +

ω2R2

2

]}1/2

Identities that involve the versors

−ê2ê2 : (∇ n̂) = ê1ê1 : (∇ n̂) +
∇‖B
B
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ê1 · (∇ n̂) · ê1 = ê2 · (∇×ê1)

= (ê2 · êϕ) êϕ · (∇×ê1)

êϕ · (∇×ê1) =
RB ·∇ |∇ψ|
|∇ψ|2

ê2 · êϕ = −|∇ψ|
BR

and

(ê1ê1 − ê2ê2) : (∇n̂)

= − B

|∇ψ|2
n̂ ·∇

(
|∇ψ|2

B

)

The linearized drift kinetic equation for f 1 the averaged function of dis-
tribution in order 1, dependent on

(x, t, ε, µ, σ = ±1)

v‖∇‖f 1 − C linf 1

= − e
T
v‖∇‖Φ1 f0

−v‖
(
∇‖α1

) [N ′
N

+
e

T
〈Φ0〉′ +

T ′

T

]
f0

−v‖
(
∇‖α2

) [T ′
T

]
f0

−v‖
(
∇‖α3

) [ω′
ω

]
f0

where the fluxes are

α1 =
m

e

(
Iv‖
B

+ ωR2

)
α2 =

(
mε

T
− 5

2

)
α1

α3 =
mω

ev2
th,i

[(
Iv‖
B

+ ωR2

)2

+ µ
|∇ψ|2

B

]
with

I = RBϕ
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It is introduced the set of thermodynamical forces

A1 =
N ′

N
+
e

T
〈Φ0〉′ +

T ′

T

A2 =
T ′

T

A3 =
ω′

ω

we note that the operator

v‖∇‖

=
v‖
qR

∂

∂θ

occurs in both sides of the drift kinetic equation and this suggests a substi-
tution

f 1 = f − eΦ1

T
f0

−
[(

Iv‖
B

+ ωR2

)
A1

+ωR2

(
mε

T
− 5

2

)
A2

+
ω

v2
th,i

(
2Iv‖
B

ωR2 + ω2R4

)
A3

]
f0

The term depending on the electric potential Φ1 is the adiabatic (Boltzmann)
response.

Hinton Wong make the observation that the linearized ion-ion collision
operator anihilates terms like(

a+ bv‖ + cv2
)
f0

(due to the conservation in collisions of - respectively, number, momentum
and energy).
The drift kinetic equation becomes

v‖∇‖f − C linf

= −v‖
(
∇‖β2

)
A2 f0

−v‖
(
∇‖β3

)
A3 f0
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where

β2 =
Iv‖
Ωi

miε

T
− 5

2

β3 =
ω

Ωiv2
th,i

(
I2v2
‖

B
+ µ |∇ψ|2

)

Note that this approach will be used later by Helander and by Fulop
Helander.

13.6 Transport in toroidally rotating plasma Catto Bern-
stein Tessarotto

the toroidal rotation can be large
Then
The poloidal variation of the density must be retained

The basic equation

∂f

∂t
+ v ·∇f + a·∂f

∂v
= C

a =
Ze

mi

(E + v ×B) acceleration

B =I∇ϕ+∇ψ ×∇ϕ
I = RBT

∇ψ = −R2B×∇ϕ
= Rêϕ ×B

( or |∇ψ| = RBθ)

The time variation
∂ψ

∂t
= −R êϕ · E

and

|∇ψ| = RBθ

êψ =
∇ψ
RBθ
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Bθ = ∇ψ ×∇ϕ
= Bθêψ × êϕ

The toroidal rotation
ω = ω (ψ, t)

and

fM =
N

(π 2T/mi)
3/2

exp

[
−mi

(v −V)2

2T

]
V = ωR êϕ

and the constraint

∇‖
[
lnN +

ZeΦ

T
− ω2R2

2T/mi

]
= 0

Other expressions

ω =
∂Φ

∂ψ

E = −ω ∇ψ

three invariants

E =
miv

2

2
+ ZeΦ

P = Zeψ +miR êϕ · v (the azimuthal - canonical momentum - invariant)

H = E − ωP + Ze

(
ωψ −

∫ ψ

ψ0

dψ ω

)
and the invariant H in the rotating frame

H =
1

2
mi

[
(v −V)2 −V2

]
+Ze

(
Φ−

∫ ψ

ψ0

dψ ω

)
The distribution function is

fM =
N0

(π 2T/mi)
3/2

exp

(
−H
T

)
where

N0 = N0 (ψ, t)

= N exp

[
Ze

T

(
Φ−

∫ ψ

ψ0

dψ ω

)
− ω2R2

2T/mi

]
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One has

Ze

(
Φ−

∫ ψ

ψ0

dψ ω

)
≡ effective potential energy

associated to the electrostatic field

in the rotating frame

The change of referential leads to

µ =
mi |n̂× (v −V)|

2B
=
miw

2B

v = V + un̂ + w

w =
w

|∇ψ| (cos ζ ∇ψ + sin ζ n̂×∇ψ)

with the volume in the new variables

d3v =
B

u

1

m2
i

dH dµ dζ

The distribution function

f = fM + g + g̃

where

g̃ ≡ part that depends on the gyroangle ζ

g ≡ part which is gyrophase averaged

g̃ =
mi

Ze

[(
∂fM
∂ψ

)∣∣∣∣
H

+fM
mi

T

(
∂ω

∂ψ

)(
ωR2 + uR êϕ · n̂

)]
Rêϕ · êw

+
mi

Ze
R2 1

2T/mi

(
fM

∂ω

∂ψ

)
êϕ ·

(
êw êw −

1

2
w2 (I− n̂ n̂)

)
· êϕ

g = h+
mi

Ze

{(
ω2R2 + uR êϕ · n̂

) (∂fM
∂ψ

)∣∣∣∣
H

+

(
fM

1

2T/mi

)[(
ω2R2 + uR êϕ · n̂

)2
+

(
µR2B2

θ

miB

)]}
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where
u = n̂ · (v −V)

u2 = v2 +
2

mi

[
H − µB − Ze

(
Φ−

∫ ψ

ψ0

dψ ω

)]

The equation for the gyrophase averaged part

un̂ ·∇g = fM
Ze

T
n̂ · (E +∇Φ)

+

(
∂fM
∂ψ

)∣∣∣∣
H

mi

Ze
u∇‖

(
ωR2 + uR êϕ · n̂

)
+
mi

Ze

1

2T/mi

(
fM

∂ω

∂ψ

)
+

[
u ∇‖

(
ωR2 + uR êϕ · n̂

)
+
uµ

mi

∇‖
(
R2B2

θ

B

)]
The term in the LHS is

un̂ ·∇g ∼ v‖∇‖g
similar with usual neoclassical equation.
The first term in the RHS is adiabatic response

∼ v‖
1

T
Ze ∇‖Φ

the second is Diamagnetic, corrected by the velocity of rotation,(
∂fM
∂ψ

)∣∣∣∣
H

mi

Ze
u∇‖ (uR êϕ · n̂)

where

êϕ · n̂ = cos (angle [B,BT ]) =
Bθ

B

mi

Ze
v‖
RBθ

B
= v‖

|∇ψ|
ZeB/mi

= |∇ψ|
v‖
Ω

and (
∂fM
∂ψ

)∣∣∣∣
H

mi

Ze
u∇‖ (uR êϕ · n̂) = v‖∇‖

(v‖
Ω

)[
|∇ψ|

(
∂fM
∂ψ

)∣∣∣∣
H

]
= v‖∇‖

(v‖
Ω

)
|∇fM |r

∼ vD,r
∂fM
∂r
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It is due to

vD ·∇ψ = − 1

Ze/mi

u∇‖
(
ωR2 + uR êϕ · n̂

)
with the definition

vD =
1

B
(−∇Φ× n̂)

+
1

Ω
n̂×

[
µ∇B
mi

+ (V+un̂) · (∇ V+u∇ n̂)

]
The last term is ∼ v‖ (n̂ ·∇) n̂ the curvature drift.

13.7 Drift-kinetic equation with rotation HazeltineWare

In the neoclassical theory (see Ware Wiley) it is found the velocity of
plasma poloidal rotation which gives the equilibrium. An estimate of this
mass velocity is

V =
ρiθ
L
vthi

where L is a typical scale length, like Ln. To obtain this it was supposed
that V � vthi.
To calculate the mass velocity of plasma at equilibrium V with better

precision or for higher values of V , it is necessary to solve the drift-kinetic
equation to second order in the small parameter ρθ/L. In [2], it is developed
a model of drift-kinetic equation taking:

• first order in ρθ/L

• keeping V as a zeroth-order quantity (i.e. not very small compared to
the thermal velocity)

• taking the zeroth-order expression of the distribution function as a
shifted Maxwellian.

The computation is performed in the frame moving with the velocity V .

absolute particle velocity = V + u + s

where un̂ is the parallel velocity relative to the moving frame and s is
the perpendicular velocity in the moving frame

s = sên cos ζ − sê⊥ sin ζ
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where the versors
(n̂, ên, ê⊥)

correspond to the directions: parallel to the magnetic field, perpendicular to
the magnetic surface and perpendicular to the vectorial product of these two
ones.

Definitions
V ≡ center of mass velocity

The particle velocity relative to the center of mass is

v = u + s

where

u ≡ n̂ (n̂ · v)

= v‖n̂

s ≡ v⊥

The particle equation of motion

d

dt
(V + u + s) =

eE

m
+ (V + s)× Ωn̂

(which is the usual type mdv/dt = eE + ev × B ). This equation contains
explicitely the gyration.
From here the equation takes a fluid form, there is divergence of the

velocity as if it were a vector field

∂

∂t
(V + u + s) + (V + u + s) ·∇ (V + u + s) =

eE

m
+

e

m
V ×B + s× Ωn̂

or

∂

∂t
(u + s) + (V + u + s) ·∇ (u + s) = F− (u + s) ·∇V + s× Ωn̂

where the force on the unit mass is

F =
e

m
(E + V ×B)− ∂V

∂t
− (V ·∇) V

Nota. It is not clear if the change to the moving frame system should
be reflected in a change of the electric field (see Peeters). Instead of E we
should put the transformed electric field.
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Conclusion: there is no change of the coordinate system. Only
some convenient quantities are used in the velocity space. The
space coordinates remain unchanged.

NOTA on the simultaneous appearence in the equation of mo-
tion of the

• particle velocity u (parallel) and s (perpendicular on B) and

• plasma rotation velocity V.

This presence of two velocities of different nature generates particular ef-
fects. In the expression of the particle drift velocity (which normally should
have to consist of only: gradB, curvature and electric ExB drifts) now ap-
pears the force which is exerted on the plasma mass and which is related
with the plasma rotation velocity V by the equation of plasma momentum
conservation. Certain effects of the force appearing in the plasma momen-
tum equation will be transfered in the formula for the particle drift velocity,
vD. In particular the diamagnetic velocity will be present in vD, which is
rather unusual.
This change, not only in the formula of vD but also in the nature of its

composition is obviously related to the change of coordinates in the velocity
space:

v is the ion (particle) velocity in the REST frame

END OF THE NOTE

NOTE on the energetic term. When the term of convection of∇f is
dominated by the velocity parallel arising from a plasma poloidal rotation:

v‖n̂ + V where

V =
K (ψ)

n
B+R

(
−∂φ
∂ψ

)
êϕ

(note this is the form adopted also by Helander 3999) the energetic term
is

v‖

(
n̂ ·∇ ·P
mn

−∇‖
v‖KB

n

)
∂f

∂w

This part also arises from the consideration of the force exerted on the particle
by the fluid in motion. The forces arising in the fluid in motion are affecting
the particle. This appears automatically since the equation drift-kinetic is
written in the REST FRAME of the rotation of the plasma.
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This is why we obtain the presence of the (Pressure) viscous force
n̂ ·∇ ·P appears in the drift-kinetic equation, which is not a fluid
equation for balance of forces.
GENERAL CONCLUSION: when the drift-kinetic equation is written in

the rest frame of the rotating plasma,

the fluid motion = plasma rotation
and the particle motion = drift motion and energy change are mixed

This is reflected by the drift-kinetic equation.
END of the NOTE.
The velocity space coordinates are

w =
v2

2
(total energy, but relative to the moving frame)

µ =
s2

2B
(magnetic moment, relative to the moving frame)

ζ the gyroangle

The calculation is similar to the gyroaveraging performed in neoclassical
theory to obtain the drift-kinetic equation.

dw

dt
= F · v − v· (v ·∇) V

B
dµ

dt
= µ

dB

dt
− us·dn̂

dt
+ F · s− s· (v ·∇) V

dζ

dt
= Ω + ê⊥ ·

dên
dt

+
ρ̂

s
·
[
u
dê⊥
dt
− F+ (v ·∇) V

]
where

ρ̂ = ên sin ζ + ê⊥ cos ζ

The outward normal to the magnetic surface

êψ

is noted in in that work

The perpendicular component of the velocity of the particle v is s ≡ v⊥ as

s = êψ v⊥ cos ζ − ê⊥ sin ζ

with the system of versors constrained by

ê⊥ = n̂× êψ
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In the equation dw/dt we note the first term which is power : F · v. The
second term is connected with the divergence of the velocity field, which also
involves power.

NOTE the equation for v2
⊥/2 in Novakovskii Sagdeev is

d

dt

(
v2
⊥
2

)
=
v2
⊥
2

(
vE + v‖b̂

)
·∇ lnB

where

vE ·∇ lnB =
1

B
φ′0

sin θ

R

This expresses the fact that the change in perpendicular energy v2
⊥/2 is

due to the work done during the motion of the particle against the gradient
of the magnetic field. The last term is

...+ v‖
v2
⊥

2B
∇‖B or

v‖ µ∇‖B = work against grad B

This is actually one of the equations of motion of the particle, extended
set (including the dynamical changes of the velocities) see Burrell, Wong,
Galeev, etc.
END

Now the gyroaveraging is performed

〈g〉 =

∮
dζ

2π
g

and the notation
g = 〈g〉+ g̃

The part of g that has dependence on the gyroangle g̃ has two components:
one in (sin ξ, cos ξ) and the other in (sin (2ζ) , cos (2ζ)).

The averages〈
dw

dt

〉
= F · u− µB (∇ ·V)−

(
u2 − µB

)
[n̂ · (n̂ ·∇) V]

B

〈
dµ

dt

〉
= −µ

[
∂B

∂t
+ (V ·∇)B

]
− µB [(∇ ·V)− n̂ · (n̂ ·∇) V]
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The cos ζ component(̃
dw

dt

)
cos

= Fψ s− 2 e‖ψ su

(̃
dw

dt

)
sin

= −F⊥ s+ 2 e‖⊥ su

(̃
dw

dt

)
cos 2

= −s
2

2
(eψψ − e⊥⊥)

(̃
dw

dt

)
sin 2

= −s2 eψ⊥

For the magnetic momentum

B
˜(dµ
dt

)
cos

= − (vD)⊥ Ω s

B
˜(dµ
dt

)
sin

= − (vD)ψ Ω s

B
˜(dµ
dt

)
cos 2

= −u s
2

2

[
1

(Rψ)‖
− 1

(R⊥)‖

]
+
s2

2
(eψψ − e⊥⊥)

B
˜(dµ
dt

)
sin 2

=
u s2

2
S − s2 eψ⊥

For the gyro-angle(̃
dζ

dt

)
cos

= − (vD)ψ
Ω

s
− s

(Rψ)⊥
− µ

s

∂B

∂x⊥(̃
dζ

dt

)
sin

= (vD)⊥
Ω

s
− s

(R⊥)ψ
− µ

s

∂B

∂xψ(̃
dζ

dt

)
cos 2

=
u

2
S + (êψ)⊥(̃

dζ

dt

)
sin 2

=
u

2

[
1

(Rψ)‖
− 1

(R⊥)‖

]
− 1

2
(eψψ − e⊥⊥)
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The notations

vD = − 1

Ω
n̂× F

+
1

Ω
n̂ µB

(
j‖
B

)
+

1

Ω
n̂×

[
µ∇B + u2 (n̂ ·∇) n̂ + (u ·∇) V+ (V ·∇) u

]
The velocity stress tensor

eij =
1

2

[
êi · (êj ·∇) V+êj · (êi ·∇) V−2

3
δij (∇ ·V)

]
The curvature coeffi cients

1

Rjk

= êj · (êj ·∇) êk

The torsion
1

Tjk
= êj · (êk ·∇) êk = − 1

Tkj

and
S ≡ 1

Tψ‖
+

1

T⊥‖

The results:

vd =
F×n̂

Ω
+

+n̂
µB

Ω

(
j‖
B

)
+

1

Ω
n̂×

(
µ∇B + u2 (n̂ ·∇) n̂

+ u ·∇V + V ·∇u)

NOTE an alternative formula

vD =
e

m
ρ‖∇×

(
ρ‖B

)
=

e

m
ρ2
‖ (µ0j)

−eB
m
ρ‖
(
n̂×∇ρ‖

)
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END

The change in the particle energy

·
w = F· (u + vd)

−µB
Ω

n̂ ·∇× F

−µB∇ ·V
−
(
u2 − µB

)
n̂ · n̂ ·∇V

−µBun̂ ·∇·
(
π

p

)
+

2u

Ω

(
ênen‖ + ê⊥en⊥

)
· {−F×n̂(

3µB − u2
)

(n̂×∇n̂)

(µB − u2)

u

n̂× (u ·∇V + V ·∇u)

u

}
where π is the magnetic viscosity part of the pressure tensor

πnn = −π⊥⊥ = − p
Ω
en⊥

π‖‖ = 0

πn⊥ = π⊥n =
p

2Ω
(enn − e⊥⊥)

where e is the velocity stress tensor

(e)αβ =
1

2

(
êα · êβ ·∇V+êβ · êα ·∇V−2

3
δαβ∇ ·V

)
The drift-kinetic equation, in its most general form:

∂f

∂t
+

+ (u + vd + V) ·∇f

+

〈
dµ

dt

〉
∂f

∂µ

+
·
w
∂f

∂w
= 0
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The ion drift-kinetic equation

∂f

∂t
+
(
v‖n̂ + V

)
·∇f −

− [V ·∇µB + µB (∇ ·V − n̂n̂: ∇V)]
∂f

∂µ
+

+

(
v‖

n̂ ·∇ ·P
nmi

− µB∇ ·V−
(
v2
‖ − µB

)
n̂n̂: ∇V

)
∂f

∂w

= C
(
f
)

where the ion STRESS tensor is

P ≡
= nT I + Π

' nT I +
3

2
π‖

(
n̂n̂− 1

3
I

)
where Π is the ion VISCOSITY tensor.

14 Hirshman ambipolarity paradox

Inertial factor.

The damping time of poloidal rotation

τ p =
1

3

(
1 + 2q̂2

) 〈B2
θ〉〈(

∇‖B
)2
〉
∑
j

njmj∑
j

µj

×
1 + 1

κp

〈B2〉
〈B2θ〉

1
1+2q̂2

1 + 1
κp

where
ρ ≡

∑
j

mjnj

κp = 4π
∑
j

mjnj c
2 〈R2〉
〈R2B2

θ〉
dielectric constant in the poloidal magnetic field

� 1
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[compare Stringer 1969, the denominator D which is D (ω, k) for ω =
vθ/r the frequency of the "perturbation" of the magnetic field = actually its
variation on poloidal direction and k‖ = 1/ (qR). Here it results the factor
of ρeff plus a correction which is c

2
sθ/v

2
θ . ]

The following approximation has been used

∑
j

µj
〈
R2∇ϕ · uj

〉
≈

∑
j

µj

ρ
Pϕ

15 The drift motion of particles according to
Novakovskii Galeev Liu Sagdeev Hassam

This is from the old text Neoclassics2.
Now it is also in polarization.

The paper discusses the poloidal damping due to magnetic pumping in
the plateau regime.
This is also in Notes density enhanced confinement.
See also plasma, general, viscosity.

It is considered a fast temporal variation of the radial electric field.
This is accompanied by a change in the neoclassical prolarization.
For the barely circulating ions, it is possible to calculate the radial po-

larization current (Novakovski). It is assumed that the radial electric field
has a time variation which can be linearized

Er = Er0 +

(
∂Er
∂t

)
t

which means that the velocity due to the radial electric field has time varia-
tion

vE = vE0 +

(
∂vE
∂t

)
t (in the poloidal direction)

The particles that are considered are

trapped ions

with v‖ � v⊥
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The equation for the poloidal motion

rdθ

dt
= vE + v‖

Bθ

BT

where
Bθ

BT

=
ε

q
≡ Θ

is the factor that projects the parallel direction on the poloidal direction.
Integrating to find θ (t)

rθ (t) = rθ0 +

(
vE0 + v‖

Bθ

BT

)
t+

1

2

(
∂vE
∂t

)
t2

The radial velocity is the radial component of the drift of the guiding center

vr = vD · êr = vD sin θ

vD =
1

Ω

v2
⊥/2 + v2

‖

R
and since we assume very small parallel velocity,

v‖ � v⊥

, we approximate

vD ≈
1

Ω

1

R

v2
⊥
2

sin θ =
1

Ω

1

R

mv2
⊥

2B

B

m
sin θ =

1

ΩR

µB

m
sin θ

and

vr (t) =
1

ΩR

µB

m
sin [θ (t)]

and the average over a transit is

〈vr〉transit =
1

2

1

τ

∫ τ/2

−τ/2
dt vr (t)

=
1

ΩR

µB

m

1

2

1

τ

∫ τ/2

−τ/2
dt sin [θ (t)]

Now we expand the function sin θ for small argument

sin [θ (t)] = sin

[
θ0 +

1

r

(
vE0 + v‖

Bθ

BT

)
t+

1

2

(
∂vE
∂t

)
t2
]

≈ sin θ0

+ cos θ0

[
1

r

(
vE0 + v‖

Bθ

BT

)
t+

1

r

1

2

(
∂vE
∂t

)
t2
]
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and the integrations over the bounce period gives

1

τ

∫ τ/2

−τ/2
dt sin θ0 = 0

1

τ

∫ τ/2

−τ/2
dt cos θ0

1

r

(
vE0 + v‖

Bθ

BT

)
t = cos θ0

1

r

(
vE0 + v‖

Bθ

BT

)
1

τ

[
τ 2

2

]τ/2
−τ/2

= 0

1

τ

∫ τ/2

−τ/2
dt cos θ0

1

r

1

2

(
∂vE
∂t

)
t2 =

1

24
cos θ0

1

r

(
∂vE
∂t

)
τ 2

The radial velocity averaged over a bounce is at this moment

〈vr〉transit =
1

ΩR

µB

m

1

2

1

τ

∫ τ/2

−τ/2
dt sin [θ (t)]

=
1

ΩR

µB

m

1

48
cos θ0

1

r

(
∂vE
∂t

)
τ 2

Now we take

τ ≡ transit time =
connection length 2πqR

parallel velocity v‖

=
2πqR∣∣v‖∣∣

It is necessary to define the regime by few parameters.

ν̂ =
r νii
Θvth,i

=
freq. of ion collisions

freq. of ion transit with poloidal velocity Θvth,i on poloidal circle

the same formula is written

ν̂ =
r νii
Θvth,i

=
r νii
ε
q
vth,i

=
νii

vth,i/ (qR)

The parallel velocity of the ions is taken at the limit where the effective ion
collision frequency is equal with the parallel transit frequency

νeff =
v‖
qR
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where by definition

νeff
def
= νii

v2
i,th

v2
‖

We combine the two expressions of νeff and further use the expression for ν̂

νii
v2
i,th

v2
‖

=
v‖
qR

or

νii
vi,th/ (qR)

=
v3
‖

v3
i,th

ν̂ =
v3
‖

v3
i,th

from where we derive v‖
vi,th

= ν̂1/3

and we replace v‖ with the expression in terms of thermal ion velocity and
the effective collision parameter ν̂

v‖ = vi,thν̂
1/3

Then the square of the bounce time τ is

τ 2 =
(2π)2 q2R2

v2
‖

=
(2π)2 q2R2

v2
i,th

ν̂−2/3

and

〈vr〉transit =
1

ΩR

µB

m

1

48
cos θ0

1

r

(
∂vE
∂t

)
τ 2

=
1

ΩR

µB

m

1

48
cos θ0

1

r

(
∂vE
∂t

)
(2π)2 q2R2

v2
i,th

ν̂−2/3

=
(2π)2

48

q2

εΩ

µB

m
cos θ0

(
∂vE
∂t

)
ν̂−2/3

To calculate the radial current two steps are necessary:
- take the fraction of the particles that have this regime
- integrate over the positions θ0. Actually, the parameter θ0 appears in

the magnitude of the magnetic field B = B0 (1− ε cos θ0) and this, in turn,
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appears in the expression of the magnetic momentum µ = v2
⊥/ (2B). Then to

integrate over the Maxwell distribution of the variable v⊥ we can equivalently
integrate over the variable θ0 for fixed µ.

The fraction of particles is
v‖
vi,th

and this is
fraction of particles ∼ ν̂1/3

When we multiply the average radial velocity by this factor

ν̂1/3 × ν̂−2/3

= ν̂−1/3

we get a dependence of the effective collisional parameter as ν̂−1/3 which will
be found in the final expression.
The Maxwellian in velocity space is

fM = N exp

(
−mv

2

2T

)

= N exp

−m
(
v2
‖ + v2

⊥

)
2T

 ∼ N exp

(
−mv

2
⊥

2T

)

= N exp

(
−µB
T

)
= N exp

(
− µB0

T (1 + ε cos θ)

)
≈ N exp

[
−µB0

T
(1− ε cos θ)

]
We use this velocity integration to suppress the indeterminancy given by the
presence of θ0 in the radial current.

∂vE
∂t

=
1

B

(
∂E

∂t

)
The radial electric current induced by the time variation of the radial

electric field is

〈jr〉 ≈
(

1 + q2 + ν̂−1/3q2
) m

B2

(
∂E

∂t

)
In this formula, 1 is the standard polarization term. The second term is
the neoclassical polarization term due to ions with comparable parallel and
perpendicular velocities, v‖ ≈ v⊥.
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The radial current averaged over surface must be zero, 〈jr〉 = 0.

In the banana regime
ν̂ ≈ ε−3/2

The neoclassical polarization radial current due to radial excursions of
the banana (trapped particles) is

jbananasr ≈ ε3/2 c
2

v2
Aθ

(
∂Er
∂t

)
NOTE
This is a usual neoclassical polarization (Robertson Hinton) in which

the dielectric coeffi cient of ∂Er/∂t is replaced(
1 +

c2

v2
A

)
→
(

1 +
c2

v2
Aθ

)
and, in addition, the banana factor

ε3/2

is included.
END

The equations are
dr

dt
= v‖n̂ + vE + vD

dv‖
dt

=

(
−v

2
⊥
2

n̂ + v‖vE

)
·∇ lnB

d

dt

(
v2
⊥
2

)
=

v2
⊥
2

(
v‖n̂ + vE

)
·∇ lnB

The drift velocity now includes the polarization drift ∼ ∂VE/∂t,

vD =
1

Ωci

(
v2
⊥
2

+ v2
‖

)
n̂×∇ lnB +

1

Ωci

n̂× ∂vE
∂t

Comparing with previous expressions of the drift velocity vD we note that
there is an additional term, which gives the effect of the fast time variation
of the radial electric field, like in transitions with rapid change of toroidal
and/or poloidal rotation velocity.
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We note however that the time variation of the electric drift velocity has
the following effect on the drift:
we suppose that

∂Er
∂t
∼ êr

exists due to the polarization effect related to the separation of charges which
results as forced increase of the poloidal velocity

∂vθ
∂t
→ ∂Er

∂t

Then vE will increase in two possible directions

∂vE
∂t
∼ 1

B

(
∂Er
∂t

êr ×Bθ +
∂Er
∂t

êr ×BT

)
Then the terms mentioned by Novakovskii is

1

Ωci

n̂× ∂vE
∂t

∼ 1

Ωci

n̂×
(
∂Er
∂t

êr ×Bθ

)
almost zero

+
1

Ωci

n̂×
(
∂Er
∂t

êr ×BT

)
radial

Therefore none of these contributions is aligned along the toroidal direction,
giving a drift of the particle population in the toroidal direction.
It seems that a treatment based on the equations of motion of the particles

governed by the invariants
E, µ

cannot give us a drift of the bananas in the toroidal direction.
Here again the drift-kinetic equation is

∂f

∂t
+ v ·∇f +

dv‖
dt

∂f

∂v‖
+
d (v2

⊥/2)

dt

∂f

∂ (v2
⊥/2)

= St (f)

The paper of Novakovskiiwants to solve the problem of decay of poloidal
rotation in the plateau regime.
Then the Drift-Kinetic equation is solved by perturbations.
Zero + order 1 + order 2 are necessary.

We must note that the zeroth order is NOT Maxwellian but it is the
equilibrium distribution function, f0.
It takes into account the variation in the surface, ∼ θ, which comes from

the balance netween the parallel advection with v‖ (this is modulated by the
mirror force) with collisions.
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In the zeroth order(
v‖
Bθ

BT

+ vE

)
∂f0

r∂θ
− St (f0) = 0

which gives a Maxwellian function possibly shifted in the parallel direction
by a velocity U0.

f0 =

(
1−

mv‖U0

T

)
fM

for

fM =
n

(2πT/m)3/2
exp

−m
(
v2
‖ + v2

⊥

)
2T


NOTE
We remark the combination

v‖
Bθ

BT

+ vE

∼ Θ
(
v‖ +

vE
Θ

)
≈ 0 (since the paranthesis is ∼ 0)

The combination v‖
Bθ
BT

+ vE is the poloidal velocity.
It is composed of the projection of the parallel velocity on θ, using Θ,

plus the poloidal velocity due to the radial electric field.
The first term

(
v‖

Bθ
BT

+ vE

)
∂f0
r∂θ
is the convection of the distribution func-

tion f0 in the poloidal direction.
It is either very small or zero.
If it exists, it is balanced by collisions.
END

Nothing at this moment suggests there can be a velocity U in the parallel
direction, i.e. along the magnetic field lines. But the equation for f0 allows
it and since we know it can exist, it is introduced at this point.
Note that the velocity along the magnetic field lines comes from a shift

in the parallel particle velocity, as

−
(
v‖ − U0

)2

2T/m

= −
v2
‖

2T/m
−

2v‖U0

2T/m
− U2

0

2T/m
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and the last term is much less than 1 since the flow with velocity U0 is slower
than the thermal velocity.
Then a substitution is made for the distribution function to extract a

rigid body rotation

f = f0 + ε

(
mv‖U0

T

)
fM

+f̃

Then the Drift-kinetic equation to order ε2 gives

∂f̃

∂t
+

(
vE + v‖

Bθ

BT

)
∂f̃

r∂θ
− St

(
f̃
)

=
sin θ

R

m
(
v2
‖ +

v2⊥
2

)
T

WfM

where W is a velocity in the poloidal direction

W ≡ vE + v∗n + U0
Bθ

BT

+v∗T

m
(
v2
‖ + v2

⊥

)
2T

− 3

2


poloidal

v∗n ≡
T

eB

d

dr
lnn (dia)

v∗T ≡ T

eB

d

dr
lnT (temperature-dia)

COMMENT
The RHS term is

sin θ

R

m
(
v2
‖ +

v2⊥
2

)
T

WfM

and represents the advection by the neoclassical drift in the RADIAL direc-
tion, of the equilibrium distribution function, with its radial gradients.
Then W is

W = poloidal velocity due to the radial electric field

+diamagnetic-density velocity (poloidal)

+diamagnetic-temperature velocity (poloidal)

+poloidal projection of the flow velocity U0
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The term sin θ
R

m

(
v2‖+

v2⊥
2

)
T

WfM comes from

v ·∇fM

and reflects the radial convective variation of the Maxwellian with the flow
velocity that exists in the plasma. The space variation of the Maxwellian fM
is RADIAL and the operator ∇ will be reduced to radial derivative

∇→ ∂

∂r
=

d

dr

Then which is the plasma velocity that will take advantage of this radial
variation of the equilibrium distribution function? It is the particle’s drift
velocty vD which will act along the minor radius vDr.
The term is actually

vDr
dfM
dr

This term is dependent on angle θ , the poloidal variable, since the radial
projection of the neoclassical drift dependes on θ.
This will become the inhomogeneous term that drives a variation of the

distribution function, asking therefore for the existence of a f1.
But what can the correction do to balance this radial convective variation

of the equilibrium distribution Maxwellian function ?
The correction f1 actually has variation in the magnetic surface, ∼ θ.
It will again be question of a convective variation, which means that there

is a poloidal velocity that will advect the function f1 along its variation.
This poloidal advection of the correction f1 (θ) will compensate for the

radial variation of the equilibrium distribution function.

To comment further, we note inRosenbluth Hazeltine Hinton 1972
the equation

vDr
∂f0

∂r
+ v‖

Bθ

B
f0
∂f̂

r∂θ
+ |e|E‖v‖

∂f0

∂ε
= C (f)

where
f = f0

(
1 + f̂

)
We recognize the same picture:

• the zero-order distribution function f0

• the perturbation of the distribution function is advected by the parallel
velocity, which is the maximum it can get.
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• the perturbation to the distribution function f̂ has only variation on
the poloidal angle θ.

• the balance is ensured by the radial advection of the equilibrium dis-
tribution function f0 by the neoclassical drift of the particles. This
drift acts only in the radial direction because the equilibrium f0 only
depends on r.

• there is another term, which is energetic. It is the work done by a
parallel electric field

v‖ × |e|E‖
and is affecting the space of velocities. It shows that our interest here
is on instabilities.

END COMMENT

The collision operator is adopted as

St (f) = −νefff

νeff =
v2
th

v2
‖
νc

NOTE
In the paper about the damping of poloidal rotation, which includes a

discussion of GAM, Novakovskii Liu Sagdeev Rosenbluth, the operator
of collision is

C = ν L (Lorentz, pitch angle)

+ν
2v‖
v2
th

wafM (Hirshman Sigmar Clarke)

ν ≡ frequency of collisions

Similar, in Rutherford, etc.
END

Regarding the application of this analysis to the case of a fast time
variation of the radial electric field (for fast transients of the poloidal or
toroidal rotation) the range of validity is established by Novakovskii et al
by choosing

vTh
qR
≈ νeff �

∂

∂t
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which means: the frequency of the bounce of the trapped particle, vTh/ (qR)
, comparable with the frequency of collisions νeff is much higher than the
frequency associated to the variation of the radial electric field, ∂/∂t. Then
during the variation of the radial electric field, which is slow, the trapped
particle makes many bounces.
Then a new small parameter has been identified and the distribution

function can be expanded in a series. The distribution function is only the
correction to the shifted Maxwellian, i.e. the function f̃ and the series is

f̃ = f1 + f2 + ...

Separately and related this time to the spatial variation of the distribution
function, it is considered the variation in the magnetic surface, i.e. the
dependence of the distribution functions fi of the poloidal angle θ:

fi =
∑
σ=±1

fiσ exp (iσθ)

Then we get the solution for the first order correction f1σ as

f1σ = −
ε

(v2⊥/2+v2‖)
2T/m

W

v‖ (Bθ/BT ) + vE − ισνeff
fM

where
ι = −1

q

note that usually is −2π
ι

= q.
σ = ±1

and

W ≡ vE + Vn +
Bθ

BT

U0 +

m
(
v2
‖ + v2

⊥

)
2T

− 3

2

VT
(compare Hinton Waltz)

NOTE that the denominator

1

v‖ (Bθ/BT ) + VE − ισνeff

is not singular only due to collisions. The collisions prevent the resonance.
END.

NOTE
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The function f1σ contains the factor W .
This W is a velocity and includes the electric velocity VE.
The electric velocity has time variation since the problem consists of

finding the rate of damping of the poloidal velocity.
Therefore the expected damping rateVE (t)meansW (t) and further f1σ (t).
We will need an equation where f1σ has time variation, balanced by other

terms in the dynamics.
END

Using the first order in the small parameter

∂/∂t

vTh/ (qR)
� 1

and the ordering

vE � vTh
Bθ

BT

vE � vthΘ

the second order contribution to the distribution function f̃ is obtained from
the differential equation

∂f1

∂t
+ v‖

Bθ

BT

∂f2

r∂θ
= −νeff f2

(we note that v‖ BθBT = vθ) from which a solution is obtained

f2σ = −ι
εσr

(v2⊥/2+v2‖)
2T/m[

v‖ (Bθ/BT )− ισrνeff
]2fM ∂vE

∂t

NOTE
The condition

∂/∂t

vTh/ (qR)
� 1

means that the events (damping of vE) discussed here happen on a scale of
time that is faster than the transit time.
END

COMMENT
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The second order correction is obtained from the balance with the time
variation of the first order variation, which means

f2 ∼
∂f1

∂t

This is because the expression for the first oorder correction f1 contains
the factor W which was derived from the radial variation of the equilibrium
distribution function f0 ∼ fM .
The factor W contains the electric potential φ that has radial variation

φ = φ (r)

BUT it also has a time variation

φ = φ (r, t)

since the decay of poloidal rotation consists of the chage of the radial electric
field that produces the torque.

torque to stop poloidal rotation

↓
Er = Er (t)

∼ decay of vθ =
Er
BT

Here it is substituted

νeff ≈
v2
Th

v2
‖
νi

and the second order contribution to the distribution function, after reversing

fi =
∑
σ=±1

fiσ exp (iσθ)

becomes (omiting the term with cos θ)

f2 =

(
v‖
vTh

)6

− ν̂2[(
v‖
vTh

)6

+ ν̂2

]2 sin θ
εr(

vTh
Bθ
BT

)2

(
v2
⊥/2 + v2

‖

)
T/m

(
v‖
vTh

)4

fM
∂vE
∂t

where it is noted later v‖
vTh
≡ x
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and
ν̂ ≡ r

vTh
Bθ
BT

νi

which is related to the standard neoclassical collisional parameter ν∗ by

ν̂ = ε3/2ν∗

= plateau collisionality parameter

It is extremely important that the expression of f2 contains a factor
∂VE/∂t.
This will contribute to the inertia to poloidal rotation 1 + q2.

In order to calculate the magnetic damping of the poloidal rotation it
is necessary to start from the radial electric current which on a magnetic
surface must have the average equal to zero

〈jr〉 = 0

The radial fluxes are considered

〈nVr〉 =
1

2π

∫ 2π

0

d3v dθ vr (1 + ε cos θ) f

where the variables in velocity space are(
v‖,

v2
⊥
2

)
and

d3v = 2πdv‖d

(
v2
⊥
2

)
The radial component of the particle drift velocity is

vr = − 1

Ωc

(
v2
⊥
2

+ v2
‖

)
sin θ

R
+

1

Ωc

∂vE
∂t

In the integral for the radial particle fluxes one substitutes the ion distribu-
tion function

f = f0 + f1 + f2 + ...

the expansion in the small parameter representing the ratio between the
characteristic frequency of the variation of the radial electric field and the
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bounce frequency.

〈jr〉 = 0

or 〈nVr〉 =
1

2π

∫ 2π

0

d3v dθ vr (1 + ε cos θ) f

or
1

2π

∫
d3vdθ

{ [
f0
∂vE
∂t
− f2

(
v2
⊥
2

+ v2
‖

)
sin θ

R

]
− f1

(
v2
⊥
2

+ v2
‖

)
sin θ

R

}
or ∫

d3vdθ

[
f0
∂vE
∂t
− f2

(
v2
⊥
2

+ v2
‖

)
sin θ

R

]
=

∫
d3vdθ f1

(
v2
⊥
2

+ v2
‖

)
sin θ

R

If the plateau collision parameter is small

ν̂ � 1

then the distribution function in order 1 can be approximated

f1 ≈ −πq
v2⊥
2

+ v2
‖

T/m
W fM δ

(
v‖
)

sin θ

NOTE that the most important contribution to the distribution function,
i.e. f1 comes from the barely trapped ions, for which v‖ ≈ 0. End.
Note similarity with Rozhansky Tendler in instabilities. End.

In the equation 〈jr〉 = 0 written above, the term f2 also contains ∂VE/∂t.
For this reason we have to group the two terms of ∂VE/∂t that occur in the

integrand f0
∂vE
∂t
− f2

(
v2⊥
2

+ v2
‖

)
sin θ
R
. We now understand why it has been

ignored the term that contains cos θ in the expression of f2 reconsituted by
inverse Fourier transform: the cos θ would give sin θ cos θ and the integral of
this on θ is zero. We retained sin θ since this gives sin2 θ with finite integral
on θ.

The two occurence of ∂VE/∂t in the expression f0
∂vE
∂t
− f2

(
v2⊥
2

+ v2
‖

)
sin θ
R
,

after integration over θ and over the velocity space d3v, lead to(
1 + q2Λ

) ∂VE
∂t

and this shows the poloidal plasma inertia.
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Note see alternative derivation in Hirshman paradox ambipolarity
in references plasma. End.

Then the equation for the poloidal velocity becomes(
1 + q2Λ

) ∂vE
∂t

= −νMP

(
vE + v∗n + U0

Bθ

BT

+
3

2
v∗T

)
where the rate of magnetic pumping damping is

νMP =

√
π

2

qvTh
R

and
Λ ≡ 3

2
+ Ξν̂−1/3

Ξ ≡ 1

2π

∫ ∞
−∞

dx x4 x6 − 1

(x6 + 1)2 exp

(
−ν̂2/3x

2

2

)
NOTE compare with Hassam Drake. End.

We remark

• the inertia in the poloidal rotation is indissolubly related to the θ vari-
ation, the poloidal variation of the distribution function

• this ∼ θ variation comes from the RADIAL neoclassical drift of par-
ticles, that advects the equilibrium distribution function, with radial
gradients

• this ∼ θ advection imposes balance parallel to the line, which involves
the modulated (magnetic mirror) parallel velocity, collisions;

• the connection is imposed by the overall condition 〈jr〉 = 0

• grouping terms with ∂VE/∂t in this constraint we transform it into an
equation for the rate of damping.

There is an asymptotic poloidal velocity which is sustained by the gradi-
ents density+temperature and, if exists, a parallel flow, simply projected on
the poloidal direction

vE∞ = −Vn −
3

2
VT −

Bθ

BT

U0

140



The equation of variation in time of the poloidal velocity is

mn
(
1 + 2q2

) ∂vE
∂t

= − 1

2πR

∫ 2π

0

(
p⊥ − p‖

)
sin θ dθ

average parallel viscous force

where

p⊥ =

∫
d3v

mv2
⊥

2
f

p‖ =

∫
d3v mv2

‖ f

16 The dynamics of the radial electric field
Novakovskii Liu Sagdeev Rosenbluth

This subject is only mentioned in polarization.tex although it is relevant to
that chapter too.

16.1 Introduction

This paper is about the fast time scale variation of the radial electric field,
therefore includes decay of poloidal rotation and GAM.

Formulation:
a plasma with Maxwellian distribution.
There are radial gradients of temperature and of the density.
The initial radial electric field is zero.
How long does it take for the system to reach the next level of stationarity,

after the relaxation ?
And what are the electric field and the radial electric field at the end ?
[We can extend and ask: what are the final distribution of parameters

(density, temperature, flows) on the magnetic surfaces, with θ dependence].

quilibrium poloidal rotation velocity

Uθ =
Bθ

BT

U‖ + VE + Vn + VT

poloidal

where U is an uniform flow along the line.
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[NOTE
compare with the previous work

W ≡ VE + v∗n + U0
Bθ

BT

+v∗T

m
(
v2
‖ + v2

⊥

)
2T

− 3

2


poloidal

END]

where

U‖ ≡ parallel flow of plasma, averaged over surface

Vn =
T

eB

1

Ln

VT =
T

eB

1

LT

VE = −Er
B

The relaxation of the poloidal rotation, symbolic eq.

∂Uθ
∂t

= −νMP (Uθ − kVT )

with

k =


−2.1 Pfirsch Schluter
−0.5 plateau
1.17 banana

and

νMP = magnetic pumping

in Pfirsch Schluter

= νPS =
ν2
b

νii
=
(bounce freq.)2

collision freq.

Fast time scales are
∂

∂t
∼ ωbounce
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In this case there are Geodesic Acoustic Modes: oscillations of the plasma
column in vertical direction

ωGAM ≈
VT
R

Asymptotic

VE = VE∞

+A exp (−γMP t)

+B cos (ωGAM t+ φ) exp (−γGAM t)

16.2 The drift-kinetic equation

The drift kinetic equation

∂f

∂t
+

(
Bθ

BT

v‖ + VE

)
∂f

r∂θ
+ Vr

∂f

∂r

+
dv‖
dt

∂f

∂v‖
+
d (v2/2)

dt

∂f

∂ (v2/2)

= C [f ]

where the radial velocity of a particle (kinetic treatment) is the neoclassical
drift, with ∼ θ, and includes the polarization drift,

Vr =
1

Ωc

v2
⊥/2 + v2

‖

R
sin θ (drift projected on r)

− 1

Ωc

∂VE
∂t

(
polarization, from

∂Er
∂t

)
with the observation that the first term should be written

1

Ωc

1

R

v2 + v2
‖

2
sin θ

because we will need variables v2/2 and v‖/v later.
The second term in the expression of Vr assumes that there is a time

variation of the radial electric field. This can only exist if there is a relative
radial displacement of charges, represented for each by the a velocity ve,ir .
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The term is from

ε0

(
1 +

c2

v2
A

)
∂Er
∂t

= eΓr

approx ε0 ×
c2

B2

µ0ρ

∂Er
∂t

= enVr

ε0 × µ0c
2 1

eB
nm

∂

∂t

(
Er
B

)
= nVr

ε0 ×
1

ε0

1

eB/m

∂ (VE)θ
∂t

= Vr

1

Ωc

∂VE
∂t

= Vr

The dimensional equation is Ampere’s law where the current is compensated
by the induction of time-varying electric field

0 = µ0jr +
1

c2

∂Er
∂t

0 = jr + ε0
∂Er
∂t

which means that in the equation for polarization one needs a ε0.

We conclude that in the kinetic equation the term

Vr
∂f

∂r

is a convection of the distribution function f due to (partly) the radial current
that is associated to the time variation of the radial electric field (damping,
polarization). This results from the Ampere equation, where the radial cur-
rent jr (implicitely the radial velocity Vr) is balanced by the time variation
of the radial electric field 1

c2
∂Er
∂t
, as the induction term in the Ampere’s law.

But which is the radial flow velocity Vr ?. It is of the ions, the electrons
are too connected with the magnetic surface.
On the other hand this term is the essential source of time variation

of the radial electric field , equivalently the poloidal rotation velocity, ∂VE
∂t
,

which will result from a balance of various mechanisms (damping by magnetic
pumping, or acceleration, etc.).

NOTE
The time variation of the poloidal velocity

∂

∂t

(
Er
B

)
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necessarily results from the torque j×B in the iterative use of the momentum
equation, with zero order velocity being Er/B, in the term mn d

dt
v, while

j = nmvr.
This occurs for example in the situation where the plasma has a Boltz-

mannian response to a potential perturbation and the convection of the Boltz-
mann response by the E × B velocity is zero: [(−∇⊥φ× n̂) ·∇⊥]

(
eφ
T

)
= 0.

The the radial flow that results is a current of polarization and its magni-
tude varies with 1/B2. Hasegawa Mima regime. It is mainly for small scale
perturbations, instabilities (since the nonlinear term has k4.

The balance along the poloidal angle θ,

nm
∂ (VE)θ
∂r

+ (...) = −∇θp+ enEθ + JrBT

with neglect of the poloidal projected electric field Eθ ≈ 0 (too small vari-
ation of the electrostatic potential along θ, ∂φ/∂θ, a neoclassical effect like
Pfirsch Schluter or Stringer), with ∇θp ≈ 0 (again weak stationary neoclas-
sical variation of parameters along θ, in the surface) and

∂VE
∂t

=
eBT

m
Vr

= ΩVr

valid when there is a radial current Jr = enVr.
There is a difference between the two explanations
In the first one, ε0

(
1 + c2

v2A

)
∂Er
∂t

= eΓr, the aspect of polarization is
strong.
In the second one the momentum balance along the poloidal direction

is dominated by the acceleration (torque) produced by the radial current,
(jr×B)θ because Vr ∼ Jr

The first explanation requires from us to accept that the magnetic field
is insensitive to the fast changes

∇×B|r = 0

and the radial current is compensated by the induction term, a time-variation
of the radial electric field ∂Er/∂t ∼ ∂Vθ/∂t.

The presence in the first argument of ε0 may leave the impression that
there is induction effect. Actually, the µ0 and

ε0
c2
will remove from the Am-

pere’s law the "induction" aspect.
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In the second derivation the balance is directly given by momenta: poloidal
torque (jr ×B)θ and acceleration ∂Vθ=E/∂t.
END

NOTE
polarization: a radial displacement of charged particles belonging to dif-

ferent species (electrons and ions) is non-balanced, so there is a radial current.
This produces a charge separation (polarization) and an electric field,

which generates rotation by E ×B.
END

The other contribution to the radial convection Vr is the neoclassical
particle drift.

The equations for velocity

dv‖
dt

= −ε
q

1

R

v2 − v2
‖

2
sin θ + v‖VE

1

R
sin θ

d (v2/2)

dt
= −

v2 + v2
‖

2

1

R
sin θ VE

NOTE
InWong Burrell the equations are

dv‖
dt

= −v
2
⊥
2
∇‖ lnB + v‖

−∇φ× n̂

B
·∇ lnB − e

m
∇‖φ

d

dt

(
v2
⊥
2

)
=

v2
⊥
2
v‖∇‖ lnB +

v2
⊥
2

−∇φ× n̂

B
·∇ lnB

For comparison, we find in derivation drift kinetic equation.tex,

∇·n̂ = −∇‖ lnB

where

∇‖ lnB =
ε

q

sin θ

R

Then for example

−v
2
⊥
2
∇‖ lnB (Wong Burrell)

−ε
q

1

R

v2 − v2
‖

2
sin θ (Novakovskii)
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are identical.
END

We remind that
ε

q
= Θ =

Bθ

BT

=
r

qR

The next order introduces the correction to the Maxwellian,

f̃

which verifies the equation

∂f̃

∂t
+
v‖
qR

∂f̃

∂θ
− ε

q

v2 − v2
‖

2

1

R
sin θ

∂f̃

∂v‖
− C

[
f̃
]

=
1

T/m

v2 + v2
‖

2

1

R
sin θ

[
VE + Vn +

(
v2

2T/m
− 3

2

)
VT

]
fM

We note that the RHS consists of diamagnetic terms, Vn and VT and

of energy term associated to the time variation of
d(v2⊥/2)

dt
, caused by the

modulation of the magnetic field along the line (mirror effect).
The first term in the RHS

sin θ
1

T/m

v2 + v2
‖

2

1

R
VE × fM

comes from
d (v2/2)

dt
= −

v2 + v2
‖

2

1

R
sin θ VE

and
∂fM

∂ (v2
⊥/2)

= − 1

T/m
fM

The second and third terms come from the neoclassical drift part in Vr,

1

Ωc

v2
⊥/2 + v2

‖

R
sin θ

and the radial derivation of the advected Maxwellian

∂fM
∂r

=

[
Vn +

(
v2

2T/m
− 3

2

)
VT

]
fM
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This means that the radial current jr which is Vr advects the Maxwellian
distribution fM , by (v ·∇) fM ∼ Vr

∂fM
∂r
.

NOTE
The term

−ε
q

v2 − v2
‖

2

1

R
sin θ

∂f̃

∂v‖

is energetic and can be explained

• using the equation for the variation of the parallel velocity (mirror
force), and

• the θ variation of the magnetic field B (r, θ).

the coeffi cient of ∂f̃/∂v‖ in the equation is

−ε
q

v2
⊥
2

1

R
sin θ

should be compared with

dv‖
dt

= −ε
q

1

R

v2 − v2
‖

2
sin θ

Indeed this is the energetic effect of the "mirror force"

dv‖
dt

∂f

∂v‖

and of course only the correction to the zero-order (Maxwellian) can have
variation with θ. However it is NOT stationary neoclassical variation in
surface, of n, T , (and pressure p) and of electrostatic potential, coming from
the same source as Pfirsch Schluter. There is now a dynamical variation
∂f̃/∂v‖.
END

The conditions

• the polarization drift has been neglected, ∂VE
∂t
. This was a part of the

radial advection, Vr
∂f̃
∂r
where part of the radial velocity Vr = (...) −

1
Ωi

∂VE
∂t

is generated by the time variation of the radial electric field -
equivalently, the time variation of the poloidal rotation velocity. It
is therefore neglected the effect of advection by the polarization term
∂VE/∂t of the equilibrium distribution function
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• neglect of VE terms in the drift-convective part in the LHS. It is question
of the term v‖VE

1
R

sin θ from
dv‖
dt
and of the term−v2+v2‖

2
1
R

sin θ VE which

is
d(v2⊥/2)

dt
. They are neglected.

We conclude from the structure of this equation that the perturbed distri-
bution function f̃ that will describe the time variation of the poloidal rotation
results from a balance of

• variation with θ of this distribution function f̃ (θ) (advected by v‖ )

• mirror force, i.e. the modulation of v‖ on θ due to the magnetic field
B (θ) which is reflected in energetic effect on f̃

(
v‖
)

• collisions

The RHS is the source, ∼ fM , with sin θ variation from the neoclassical
drifts that advects RADIALLY fM , with its radial gradients

Change of variables (
v2/2, v‖

)
→
(
v, ξ =

v‖
v

)
The equation becomes

∂f̃

∂t
+ ξv

1

qR

∂f̃

∂θ
− ε

q

v
(
1− ξ2

)
2

1

R
sin θ

∂f̃

∂ξ
− C

[
f̃
]

= sin θ
1

T/m

v2
(
1 + ξ2

)
2

1

R

[
VE + Vn +

(
v2

2T/m
− 3

2

)
VT

]
fM

NOTE
In Sugama Nishimura the parallel velocity operator is

V‖ [] = vξ∇‖ −
1

2
v
(
1− ξ2

)
∇‖ lnB

∂

∂ξ

without including the E ×B magnetic drifts.
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This is because the coeffi cients of ∂f̃/∂ξ are

ε

q

sin θ

R
(Novakovskii) = ∇‖ lnB (Sugama)

= ∇‖ ln
B0

1 + ε cos θ
=

1

qR

∂

∂θ
[lnB0 − ln (1 + ε cos θ)]

= − 1

qR

−ε sin θ

1 + ε cos θ
=
ε

q

sin θ

R
(1− ε cos θ)

=
ε

q

sin θ

R
ok

The two expressions are identical.
END

NOTE
About the term

−ε
q

v
(
1− ξ2

)
2

1

R
sin θ

∂f̃

∂ξ

It is in velocity space.
In Stringer.tex, it is derived (Hassam Antonsen)

û‖ = −2qRε
cos θ

r
V̂E

but this û‖ is not used for energy changes. Its time variation comes from
parallel gradient of pressure.
END

16.3 Collision operator

The collision operator must contain pitch angle scattering and slowing down,
the usual structure.

C [f ] = νc (x)
∂

∂ξ

(
1− ξ2

) ∂f
∂ξ

+ξŜ1 [f ]

where

x =
v2

2T/m
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νc (x) =
3
√

2π

4
νii

[(
1− 1

2x2

)
erf (x) +

exp (−x2)√
πx

]
νii = 4π

e4

m2
λ
n

v3
th

and

Ŝ1 [f ] = 3 [νc (x)− νslowing (x)]

∫ 1

−1

dξ ξ f

+3xνslowing (x) fM

∫
dx′ νslowing (x′)x′3

(∫ 1

−1
dξ′ ξ′ f

)
∫
dx′ νslowing (x′) x′4 fM

The slowing down frequency

νslowing (x) = νii
2

x3

[
erf (x)− 2x exp (−x2)√

π

]

NOTE
In Novakovskii Liu Sagdeev Rosenbluth the collision operator is

St (f) = νc (x)
∂

∂ξ

(
1− ξ2

) ∂f
∂ξ

+ξ Ŝ [f1]

where

x2 ≡ v2

(2T/m)
=

v2

v2
th

and

νc =
3
√

2π

4
νii

1

x3

[(
1− 1

2x2

)
erf (x) +

1√
π

exp (−x2)

x

]

νii =
4πe4

m2

1

Λ

n

v3
th

typical ∼ n

T 3/2

Ŝ [f ] ≡ Hirshman Sigmar Clarke - type

= [νc (x)− νslowing (x)] 3

∫ 1

−1

dξ ξ f

+νslowing (x) 3x fM

∫
dx′ x′3νslowing (x′)

(∫ 1

−1
dξ′ ξ′ f

)
∫
dx′ x′4 νslowing (x′) fM
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The slowing down frequency is

νslowing (x) = νii
2

x3

[
erf (x)− 1√

π
2x exp

(
−x2

)]
This operator is again of the form

C = L (Lorentz) + [Hirshman Sigmar Clarke]

[pitch angle] + [slowing]

END

NOTE
In Helander stellarator the operator of collision is

Ca (fa1) → νa L (fa1)

+νa v‖ wa
1

Ta/ma

fa0

where

L =
1

2

∂

∂ξ

(
1− ξ2

) ∂
∂ξ
Lorentz

wa ≡ function of speed v determined by integral conditions
Therefore we have the same structure

C = L (Lorentz) + (Hirshman Sigman Clarke)

END

Normalization of the quantities in the equation

ν̂c = νc (x)
vth
qR

t̂ = t
vth
qR

f̃ → f̂

f̃ = f̂ fM

Then

∂f̂

∂t̂
+ ξx

∂f̂

∂θ
− ε

x
(
1− ξ2

)
2

sin θ
∂f̂

∂ξ
− Ĉ

[
f̂
]

= sin θ x2
(
1 + ξ2

) [
V̂E + V̂n +

(
x2 − 3

2

)
V̂T

]
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where the drift velocities have been normalized

V̂E = VE
q

vth
(electric)

V̂n = Vn
q

vth
(dia - n)

V̂T = VT
q

vth
(dia - T)

The collision operator becomes Ĉ after taking

ν̂ii = νii
vth
qR

A very important condition: the radial current across a surface must
average to zero. This is the quasineutrality.

〈jr〉 =

∫
d3v Vrf Rdθ = 0

[NOTE
in stringer.tex this condition is essential in establishing a relation

R

Bϕ

Bpol ·
[
nmi

du

dt
+ T∇n

]
= j ·∇ψ

between the time variation of the poloidal electric velocity VE and the θ−dependent
density perturbation in surface, n1 (θ).
This leads to

∂VE
∂t

= −1

r
ε
c2
s

n0

∫
dθ

2π
2 sin θ n1

END].

The volume in the velocity space is

d3v = 2πv2dvdξ∫
d3v... =

∫ ∞
0

dv

∫ 1

−1

dξ 2πv2...

and
R ∼ h = 1 + ε cos θ
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In the expression of the (averaged) radial current 〈jr〉 one inserts the
radial velocity composed of drift and polarization

Vr =
1

Ωc

v2
⊥/2 + v2

‖

R
sin θ − 1

Ωc

∂VE
∂t

and separate (i.e. focus on) the ∂VE/∂t,

∂V̂E
∂t

+
q2

2π3/2

∫
dx dξ dθ

(
1 + ξ2

)
x4 exp

(
−x2

)
f̂ sin θ = 0

NOTE
This step is essential in determination of the rate of change of the poloidal

velocity , ∂VE/∂t.
Here the condition of zero radial current averaged over surface is converted

in the equation for time evolution of the electric velocity VE (t). This arises
because the radial velocity Vr contains a term that depends of ∂VE/∂t.
END

Further one takes the surface average of the macroscopic parallel flow
velocity

U‖ =

∫
d3v dθ v‖f∫
d3v dθ f

after normalization

U‖ → Û‖ = ε
U‖
vth

and for it the surface average is

Û‖ = ε
1

π3/2

∫
dx dξ dθ x3ξ f̂ exp

(
−x2

)

16.4 Solution by expansion with separation of vari-
ables v and ξ

The problem of solving the drift-kinetic equation comes from the structure
of the collision operator.

The solution si to use series with terms where it is adopted the separation
of variables.
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The solution of the normalized drift kinetic equation is obtained after
adopting the usual separation of variables

f̂ (θ, ξ, x) =
∑

Fn (θ, x)Pn (ξ)

which must deal with the collision operator.
This is an important separation of variables

x ≡ v/vth the magnitude of the velocity (normalized)

ξ ≡ v‖/v the pitch angle variable,

adapted to the structure of f in velocity space

This expansion is inserted in the equation for f̂ . Using the orthogonality
of the Legendre equation one obtains a system. The collision operator has
the property

Ĉ
[∑

Bn (x)Pn (ξ)
]

= −
∑

(ν̂n Bn)Pn

ν̂n (x)Bn = n (n+ 1) [ν̂c − δ1,n (ν̂c − ν̂S)]Bn

−xν̂Sδ1,n

∫
dx x3ν̂SBn∫

dx ν̂S exp (−x2)x4

The system of equations for Fn is

∂Fn
∂t

+ x

(
n

2n− 1

∂Fn−1

∂θ
+

n+ 1

2n+ 3

∂Fn+1

∂θ

)
+ε

sin θ

2
x

[
n (n− 1)

2n− 1
Fn−1 −

(n+ 1) (n+ 2)

2n+ 3
Fn+1

]
+ν̂nFn

= x2 sin θ
4δ0,n + 2δ2,n

3

[
VE + Vn +

(
x2 − 3

2

)
VT

]

The quasineutrality condition (surface average of radial current is zero
〈jr〉 = 0)

∂VE
∂t

+
4q2

3π3/2

∫
dx dθ (F0 + 0.1 F2) sin θ x4 exp

(
−x2

)
Conclusion on the role of parameters

ε → control of mirror force

which means the NUMBER of banana
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ν∗ → collisionality

q → controls the Landau resonance

Conclusion about the origin of the magnetic damping of poloidal rota-
tion.
It arises a discontinuity at the boundary in the velocity space between

trapped and circulating particles.
The different behavior of trapped versus circulating particles is manifested

at an adiabatic change of the temperature gradient.
The trapped particles are only very weakly collisional.
NOTE
In collision.tex
At the limit of the plateau to banana regime

ν∗ = ε3/2 v

qR

END
Therefore the trapped particles reach very fast stationarity in the new

conditions of the gradient of T .
The circulating particles react slowly.
This produces a discontinuity at the boundary trapped/circulating.
The discontinuity at the boundary acts like a friction, a damping mech-

anism.
The smoothing of the discontinuity is realized with a rate

νii
ε

The damping of the poloidal rotation is due to the collisional friction
between the circulating ions (that have poloidal rotation) and the ions on
bananas (that cannot have rotation).

The trapping condition for a particle at the poloidal position θ is

|ξ| ≡
∣∣∣v‖
v

∣∣∣ ≤√ε (1 + cos θ)
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16.5 The static distribution of bananas

Starting from the equation for the first order distribution function (see above)

∂f̂

∂t̂
+ ξx

∂f̂

∂θ
− ε

x
(
1− ξ2

)
2

sin θ
∂f̂

∂z
− Ĉ

[
f̂
]

= sin θ x2
(
1 + ξ2

) [
V̂E + V̂n +

(
x2 − 3

2

)
V̂T

]
Here

• one neglects the collisions Ĉ
[
f̂
]
→ 0 and

• takes stationarity, ∂
∂t

= 0,

obtaining

ξx
∂f̂

∂θ
− ε

x
(
1− ξ2

)
2

sin θ
∂f̂

∂z

= sin θ x2
(
1 + ξ2

) [
V̂E + V̂n +

(
x2 − 3

2

)
V̂T

]
exp

(
−x2

)
The solution is the static distribution of bananas

f̂ = −ξ x (1 + ε cos θ)
2

ε

[
VE + Vn +

(
x2 − 3

2

)
VT

]
exp

(
−x2

)
+C

Here C is a function

C ≡ C (x, µ, ε)

C is zero for trapped particles

that is constant along the lines and can be obtained from the surface average
of the equation written for the next order in

ν̂

ωbounce

(the bounce motion is much faster than collisions).
It is introduced a function of distribution

F (ξ, θ) =

∫
dx f̂ x2

integration over v after which only remaining

dependence on v‖/v
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and after replacing the static distribution of the bananas, one has

F ∼ ξ (1 + ε cos θ) (VE + Vn + 0.5VT )

for bananas

17 Direction of poloidal flows

There is a file Direction of flows.tex.

17.1 First choice of system of versors attached to the
slab model

The system of reference is :

êx directed along r toward the center of plasma

êy directed along θ with increasing θ (from equator to major axis)

n̂ along B

This gives
êx × êy = n̂

Here it is assumed that θ is measured from the equatorial plane and in-
creases up in the semispace of positive Z coordinate (this is the major axis
of symmetry), toward the major axis of the torus.
The characteristics of this choice is that the gradients are

∇n ∼∇T ∼ êx

Looking in the same direction as the magnetic field, the versor êx is
directed toward the magnetic axis (the center of plasma), êy is tangent to
the circle r and points to the left, n̂ points as B.

Apparently, the paper of Kishimoto Poloidal shear flow effect shows
a geometry of rotation compatible with this option.

Figure 1: From the paper Poloidal shear effect, Kim, Kishimoto, Wakatani,
Tajima PoP3 (1996) 3689.
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In this paper the ion diamagnetic flow is to the left. The coordinate angle
θ is measured as in our option, from the equatorial plane toward left, up, to
the major symmetry axis.

In the paper Laedke Spatschek it is made an option: the gradient of
the density is along the versor êx, i.e. it is positive when it points toward
the magnetic axis, which is compatible with the present choice. They find
that

1 +
ρ2
sΩiκn
u

= 1 +
|ρscs/Ln|
− |u|

= 1− |vdia||u| > 0

when u is a propagation in the negative y direction (in our system that would
be to the right)

u = − |u| êy
The diamagnetic velocity

n̂×∇p ∼ êy

is to the left, also shown by Laedke Spatschek

vdia = κnρ
2
sΩi > 0

vdia = |ρscs/Ln| êy

They also find the conditions for the existence of the nonlinear vortex solu-
tions

1

ρ2
s

+
κnΩi

u
> 0

in the two forms.
Form I:

u > 0

(which means that the plasma rotates in the same direction as the ION
diamagnetic drift vdia, to the left, in the direction of the versor êy) or
Form II:

u < −vdia
(which means that the plasma rotates in the direction opposite to the ION
diamagnetic drift , which means in the direction of the electron diamagnetic
drift and faster than the ion diamagnetic velocity).

This is from Scott habillitation and is connected with the options that
will lead to the drift wave theory.
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The lowest order flows, for ions

v
(0)
⊥i =

−∇φ× n̂

B0

+
1

n |e|
n̂×∇pi
B0

and for electrons

v
(0)
⊥e = v⊥e =

−∇φ× n̂

B0

− 1

n |e|
n̂×∇pe
B0

There is no other component in the perpendicular electron velocity since
there is no electron inertia.

The electron diamagnetic velocity (the minus sign − comes from the
charge of the electron) is

vdia,e = − 1

ne |e|
n̂×∇pe
B0

If the pressure pe increases toward the center then

∇pe ∼ êx

and
n̂×∇pe ∼ n̂× êx = êy

Then

vdia,e = − 1

ne |e|
n̂×∇pe
B0

∼ −êy

The diamagnetic electrons are rotating in the poloidal direction in the sense
of decreasing θ (this can be said: in the right or clockwise direction).

The ion diamagnetic velocity is

vdia,i =
1

n |e|
n̂×∇pi
B0

Since the ion pressure increases toward the center of plasma, the gradient
∇pi has the direction

∇pi ∼ êx

and
n̂×∇pi ∼ n̂× êx = êy
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Then

vdia,i =
1

ne |e|
n̂×∇pi
B0

∼ êy

The ions have a diamagnetic velocity on the poloidal direction in the sense of
increasing the angle θ. This can be said : toward left, or counter-clockwise
direction).
In conclusion, if we look in the direction of the magnetic field,

in a point that is outer equatorial, the ion diamagnetic rotation is
to the left and up and the electron diamagnetic rotation is to the
right and down.

Let us consider an electric potential φ that

1. is negative,
φ < 0

2. it is increasing toward zero value toward the edge (starting from a deep
negative value in the plasma center). The gradient points toward th
exterior of the plasma

∇φ ∼ −êx

where êx is defined as in the slab geometry, with y (poloidal) direction
toward the left, the z direction from the current origin toward the far
point. The x direction is then negative on the minor radius direction,
i.e. toward the magnetic axis.

Then we have

−∇φ× n̂ ∼ − (−êx)× n̂

= êx × n̂

= −êy (to the right)

Then the electric velocity is in the clockwise direction, exactly as the elec-
tron diamagnetic velocity and opposite to the ion diamagnetic velocity

vE ∼ vdia,e ∼ −êy (clockwise, as the electrons)

vE ∼ −vdia,i ∼ −êy (clockwise, opposite than ions)

Now we can look at the "first order" velocities for electrons and ions.
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For ions

v
(0)
⊥i =

−∇φ× n̂

B0

+
1

n |e|
n̂×∇pi
B0

∼ (clockwise)+ (counter-clockwise)

∼ (− |vE|+ |vdia,i|) êy

∼ small, can have any sign

hence the velocities are subtracted one from the other. The zeroth order
velocity for the ions is small when the electric rotation velocity (in the clock-
wise direction) is almost equal but slightly larger than the ion’s diamagnetic
velocity (in the anti-clockwise direction).

For electrons

v
(0)
⊥e = v⊥e =

−∇φ× n̂

B0

− 1

n |e|
n̂×∇pe
B0

∼ (clockwise)+ (clockwise)

∼ (− |vE| − |vdia,e|) êy

∼ large, clockwise

The two velocities are added together.

The diamagnetic cancellation is useful only when we consider full balance
equations, and look for the fluxes (of particles or heat).
When we calculate the velocities there is no reason to neglect any of these

velocities. All must be retained.

In Su Yushmanov the velocity u⊥ is defined such that positive Er gives
positive u⊥ which is rotation in the ion diamagnetic direction.

In Bortolon Duval Scarabosio reversal of toroidal rotation due to
density ramp up, the direction in L mode:
plasma rotates toroidally in the counter direction with respect to the

plasma current [like in L-mode] i.e. electron diamagnetic drift rotation,
negative values.

17.2 Second choice of the system of versors

This is used by Brunner.
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The system of reference is :

êx directed along r toward the exterior of plasma

êy directed along θ with increasing θ (from vertical axis toward the equator)

n̂ along B

This gives
êx × êy = n̂

Here it is assumed that θ is measured from a vertical axis passing through
the magnetic axis (parallel with the major symmetry axis of the torus) and
increases when going toward the equator.
The characteristics of this choice is that the gradients are

∇n ∼∇T ∼ −êx

Looking in the same direction as the magnetic field, the versor êx is
directed toward the exterior of plasma, êy is tangent to the circle r and
points to the right, n̂ points as B.

The Review Modern Phys. Horton, uses this system. The gradient of
n (x) and T (x) are in a direction opposite to the versor on the radius. The
versor on the radius êx points to exterior of plasma. The poloidal versor êy
points to the right.

In the paper Tajima Horton Morrison Mima it is said:
the positive potential plasmas (more ions inside) rotate in the ion dia-

magnetic direction [up from equator]
the negative potential plasmas (more electrons inside) rotate in the elec-

tron diamagnetic direction [down]

18 System for plasma spin-up

18.1 Hassam: system for poloidal asymmetry of diffu-
sion and/or sources

Model of Hassam.
The equations governing the spontaneous poloidal spin-up:
Continuity with possible source and radial flux depending on θ, θ-asymmetric,

∂n

∂t
+∇· (nu⊥) + B ·∇

(nu‖
B

)
= S − 1

r

∂

∂r
(rΓr)
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The momentum equation

nmi

(
∂u

∂t
+ (u ·∇) u

)
= −T∇n+ j×B−miuS , (T is constant)

∇ · j = 0

−∇φ+ u×B = 0 (no resistivity)

Note
The amount of momentum that is due to the source S is

−miuS

and is negative. The source provides particles that have very low velocity
and must be rised to u. This means that the fluid loses momentum miu for
every new particle of the source. It is collisional.
End

The equations used by Hassam for studying the spin-up contain a term
(we note here v⊥ = u⊥)

∇· (nv⊥)

In the lowest approximation, the perpendicular velocity is that given by the
radial electric field

v⊥ =
−∇φ× n̂

B

This is a perpendicular velocity. Let us consider the approximation of the
velocity along the poloidal direction, which is very close to the perpendicular
one

v⊥ '
−∇φ× n̂

B0

B0

B
=

∣∣∣∣−∇φ× n̂

B0

∣∣∣∣ êθB0

B

= uE êθ
B0

B

where uE is constant on the magnetic surface. Then in the equation of
continuity

∇· (nv⊥) = ∇·
(
nuE êθ

B0

B

)
= n0∇·

(
uE êθ

B0

B

)
+

1

r

∂n1

∂θ
uE
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In the last term, the correction to the density n0 (constant on the surface) is
due to the variation of the density on the surface and is of the order ε. Then
the difference between B and B0 being of order ε as well, has been neglected
for that term. The first term is made more explicit writting the dependence
of B of the angle θ:

B =
B0

1 + ε cos θ

∇·
(
uE êθ

B0

B

)
= ∇· [uE êθ (1 + ε cos θ)]

In the orthogonal coordinates (r, θ, ϕ) we have the element of distance:

dl2 = (dr)2 + r2 (dθ)2 + (R0 + r cos θ)2 dϕ2

which gives the Lamé metric coeffi cients

h1 = 1

h2 = r

h3 = R0 + r cos θ

Then the divergence of a vector a is written

∇ · a =
1

h1h2h3

(
∂

∂r
(h2h3a1) +

∂

∂θ
(h1h3a2) +

∂

∂ϕ
(h1h2a3)

)
which gives

∇· [uE êθ (1 + ε cos θ)] = uE
1

r (R0 + r cos θ)

∂

∂θ
((R0 + r cos θ) (1 + ε cos θ))

= uE
1

r (R0 + r cos θ)
R0

∂

∂θ

[
(1 + ε cos θ)2]

= uEε
(−2 sin θ)

r

With this, we get

∇· (nv⊥) = n0 uEε
(−2 sin θ)

r
+
∂n1

r∂θ
uE

and is of order ε.

In PRL66(1991)309 Hassam uses the equations

∂n

∂t
+∇· (nv⊥) + B ·∇

(nv‖
B

)
= 0
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(no source, no diffusion, i.e. S − 1
r
∂
∂r

(rΓr) as present in the treatment of the
spontaneous poloidal rotation).

The momentum conservation equation

nM
∂ (B · v)

∂t
+ nMBv : ∇v = −TB ·∇n−B∇ : Π

We note that in this equation
- the term j×B has been suppressed by the projection (scalar multipli-

cation with B) and
- there is explicit presence of the anisotropy of the pressure tensor.

The equation of current conservation ∇ · j = 0, i.e.

B ·∇
(
j‖
B

)
= −∇⊥ · j⊥

where

v⊥ =
−∇φ×B

B2
+

R⊥ ×B

B2

j⊥ = n̂×
(
nM

dv

dt
+ T∇n+∇ ·Π

)

HereR⊥ is a generalized electron-ion momentum transfer term. (is a B0

missing at the denominator of this formula?). This term generates
drift motion of particles by the interaction between the force R and the
magnetic field (the usual F×B

B2
).

The parallel viscous stress Π is the origin of magnetic pumping.
Note that Su Yushmanov Dong Horton express the neoclassical force

in the equation for the perpendicular momentum

nm
(
1 + 2q̂2

) ∂u⊥
∂t

= −F nc − FR − FR
∼ − F a

⊥

as

F nc = −BT

Bθ

1

B0

〈
B2 (B ·∇)

P‖ − P⊥
2B2

〉
Therefore the effect of magnetic pumping on the poloidal rotation is expressed
as a parallel divergence of the anisotropy of the pressure.
Remember the factor (1 + 2q̂2) which enhances the inertia of plasma at

poloidal acceleration/decay is calculated by Novakovski.
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End.

Note in Beer thesis the Boltzmann equation is for

∂ (FB)

∂t
...

where the presence of B is explained by the Jacobian for the change of
variables.
End.

There are new velocities that are defined on the basis of the poloidal and
toroidal velocities:

(Vpol, Vtor) and

(vθ, vϕ)

The definitions of the poloidal and toroidal velocities are

Vpol ≡
〈
vθ

(
1 +

r

R
cos θ

)〉
≡ function of only the surface, r

Vtor ≡
〈
vϕ

(
1 +

r

R
cos θ

)〉
≡ function of only the surface, r

and the surface averaging operator is

〈f〉 ≡
∮

dθ

2π
f
(

1 +
r

R
cos θ

)
The velocities are

vθ =
Vpol (r)

1 + r
R

cos θ

vϕ ' Vtor − 2qVpol cos θ + ε

[
Vtor cos θ + 2qVpol

(
1 +

1

4
cos 2θ

)]
NOTE
The formula 1.22 of Rozhansky Tendler Rev Plasma is

uiϕ = uϕ (1− ε cos θ)− 2qVθ cos θ + 2εqVθ

−1.5ε2uϕ

END.
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The flux surface average of the toroidal angular momentum

〈nRvϕ〉 ' nR0Vtor

As is typical in fluid studies on vorticity, one can define the circulation.
This quantity is the integral of the velocity along a closed loop, in par-

ticular a streamfunction

circulation =

∮
dl · v =

∮
dl‖ v‖

where ‖ refers to the tangent to the loop curve.
The average (calculated as 〈f〉 ≡

∮
dθ
2π
f
(
1 + r

R
cos θ

)
) of the quantity

defined by v‖ (to the magnetic line) multiplied by the factor 1
h
is an integral〈

v‖
B

B0

〉
=

〈
v‖

1

h

〉
=

∮
dθ

2π
v‖

1

h
h

=

∮
dθ

2π
v‖

=
1

r
×
(
circulation of v‖

)
circulation 〈

v‖B

B0

〉
' Vtor + Θ

(
1 + 2q2

)
Vpol

where

Θ (r) =
r

qR
=
ε

q

=
Bθ

BT

or 〈v‖
h

〉
' Vtor (r)

+
Bθ

Btor

(
1 + 2q2

)
Vpol (r)

The flux of transport of various quantities transversal on the magnetic
surfaces is given by

nvr =
R⊥
eB
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Note this is essentially the radial velocity which is calculated here as drift
velocity produced by the force R⊥ in

R⊥×B
B2

. The factors ne were already in
R⊥.
End.

NOTE for comparison, the radial velocity vr in hose-like non-resistive
(η = 0) is due to Jr and this in turn results from balancing Jr ×Bθ with the
toroidal flow (v ·∇) vϕ with v ·∇ = vθ∂/ (r∂θ).
[super-Note remember this static equilibrium can possibly be invoked

to saturate - in the ideal η = 0 case) the polarization generated by the
continuous input of fast ions NBI]
END

And, when η 6= 0 as in Stringer (Pfirsch Schluter)

vrBθ = ηJz

with the explanation: the simple existence of the diamagnetic flow and of
toroidal geometry leads to the toroidal (harmonic) Pfirsch Schluter current;
and this one, from Ohm’s law is due to the v ×B with an obligation to have
a radial velocity.

18.1.1 Simplified form of this system of equations

In IAEA-CN-53 Hassam uses a system of equations for three quantities:

1. averaged density
〈n〉

2. the toroidal angular momentum

〈nRvϕ〉

the circulation 〈
v‖B

〉
In the absence of sources the density and the toroidal angular momentum

are conserved. The circulation is only convected.

They obtain the following system, the first two representing the two con-
servation laws:

∂n

∂t
+

1

r

∂

∂r
(rnvr) = 0

169



∂

∂t
(nVϕ) +

1

r

∂

∂r
[rn (Vϕvr − qVθṽr)] = 0

∂

∂t

[
Vϕ + Θ

(
1 + 2q2

)
Vθ
]

+ vr
∂Vϕ
∂r
− ṽr

∂

∂r
(qVθ) +magnetic pumping = 0

where
〈n〉 = n (r)

nVϕ (r) ≡ 1

R0

〈nvϕR〉

Vθ (r) ≡ 1

R0

〈vθR〉

with the magnetic field

B ≡ [0,Θ (r) , 1]
B0R0

R

=

[
0,

r

qR0

B0R0

R
,
B0R0

R

]
=

[
0,
Bθ

BT

B0,
B0

h

]
R = R0 + r cos θ

1 + ε cos θ =
R

R0

≡ h

Θ (r) =
r

qR0

=
Bθ

BT

� 1

The surface averaging operation is

〈f〉 ≡
∮

dθ

2π
(1 + ε cos θ) f

=

∮
dθ

2π
h f

which leads to

nVϕ (r) ≡ 1

R0

〈nvϕR〉 = 〈nvϕ h〉 =

∮
dθ

2π
h2 nvϕ
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and

Vθ (r) ≡ 1

R0

〈vθR〉 = 〈vθ h〉 =

∮
dθ

2π
h2 vθ

These should be compared with

〈f〉 =

∮
dθ

B·∇θf∮
dθ

B·∇θ

dθ

B ·∇θ =
1

B

dθ

∇‖θ
=

1

B
qRdθ =

1

B

rBT

RBθ

Rdθ

= rdθ
BT

B

1

Bθ

≈ rdθ

Bθ

The quantities vr and ṽr represent radial diffusion velocities arising
from electron-ion momentum transfer. The force associated to this momen-
tum transfer is

R⊥ with the direction of B×∇n
Then the radial diffusion flux is

nvr =
R⊥
eB

from which the two definitions are obtained:

vr ≡ 〈vr〉

ṽr ≡ 〈2 cos θ vr〉

The resulting equation for the plasma poloidal velocity is

Θ
(
1 + 2q2

)(∂Vθ
∂t

+ γMPVθ

)
+ qVθ

1

nr

∂

∂r
(nrṽr) = 0
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18.2 hose-like: System of equation for spontaneous
poloidal rotation and shock formation (Rosen-
bluth Lee Hazeltine 2)

Important NOTE
This calculation is very general: it is simply assumed that there is a

poloidal rotation and the variations on the magnetic surface of the poloidal
velocity, density, toroidal velocity, radial current, parallel current, are calcu-
lated (first in the absence of the resistivity η = 0 then with small resistivity
η 6= 0). The variations on surfaces are determined by the toroidal geometry.
The Pfirsch Schluter flow and the Stringer mechanism exist within this

treatment and they can be obtianed, in particular, by choosing the diamag-
netic flow as poloidal rotation.
END

This part is also in Stringer.
This part is also in equilibrium flows notes.tex.
The paper Resistive plasma rotation shock formation Rosenbluth

Lee Hazeltine 1971. Hose.
The physical picture: in zeroth order in the dissipative mechanism (here

the resistivity η) the quantities that are θ-averaged over the magnetic surface

ρ density

u poloidal rotation speed

v toroidal velocity

can be prescribed independently from surface to surface, by arbitrary func-
tions.
The zeroth-order (in η) equations uniquely determine the azimuthally-

varying parts of the full functions

ρ+ δρ (θ)

u+ δu (θ)

v + δv (θ)

The poloidal variation occurs due to the toroidal geometry, reflected in the
expressions of the operators of the MHD equations.
Note the variation of the poloidal rotation is also discussed in Hassam

Kulsrud as bycicle effect. End.
In this zero order different possible steady states are identified. [Ware

finds a large class of poloidal rotation equilibria]
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When there is non-zero resistivity η it exists interaction. The effect is a
slow

τ ∼ 1

η

transition between the steady states found at the zeroth-order. The time-
dependent equations resulted from the inclusion of the small η show that the
rotations with small poloidal speeds have the tendency to accelerate.

The MHD equations + small resistivity

∂v

∂t
+ (v ·∇) v = −c

2
s

ρ
∇ρ+

1

ρ
J×B (1)

∂ρ

∂t
+∇· (ρv) = 0 (2)

∇ · J = 0 (3)

−∇φ+ v ×B = ηJ (4)

Note the absence of anisotropy
(
Π‖, Π⊥

)
of the pressure tensor in ‖

relative to ⊥ directions, that are usually invoked to represent the magnetic
pumping damping of poloidal rotation (see Hassam).
End.

Note the absence of the temperature variation (in the gad-pressure term).
End.

Note the absence of the Ampere’s law

∇×B = µ0J

from the system of equations. They assume that the fields are produced by
external coils and are given and with no change.
There is no magnetic fluctuations induced by the waves.
End.

The magnetic field

B =

(
0,
ε

q

B0

h
,
B0

h

)
h ≡ 1 + ε cos θ
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We note that the toroidal component B0/h is used in the definition of the
poloidal component. It is just projected with the Russian factor

Bθ = Bϕ ×Θ

= Bϕ ×
(
Bθ

Bϕ

)
= Bϕ ×

RBθ

rBϕ

r

R

= Bϕ ×
ε

q
where Θ =

ε

q
� 1

Note that looks like Novakovskii. End.
Axial symmetry

∂

∂z
= 0

The zeroth-order equations are obtained

zero-th order
{

η ' 0
∂
∂t
→ 0

NOTE. The fact that the zero-order is obtained taking the time-variation
as zero means that this result cannot be applied to the fast time increase of
the poloidal flow at the onset of the cells of convection in Inverse RH
problem.
Also there is no decay of an initial poloidal rotation, at relaxation, like in

Taguchi, etc.
No fast variation of kinetic f as decay Novakovski of the poloidal rota-

tion by TTMP.
End.

It results that the average radial velocity is zero and there is only θ-
dependent radial velocity

vr = 0

and the Ohm’s law (4) gives
∂φ

∂θ
= 0

In the zeroth order the potential does not vary on the magnetic surface, there
is no poloidal electric field. We draw conclusion that the variation of the
electrostatic potential on a magnetic surface is connected with a
dissipative mechanism: diffusion, resistivity.
This is explained in Stringer, Rosenbluth, etc.

The information that vr = 0 can now be used to extend our knowledge
on the poloidal velocity, via the continuity equation.
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This is the very important assumption, usually taken as zero radial cur-
rent

jr = 0

It also results from the continuity equation

∇· (ρv) = 0

∂

∂θ
(hρvθ) = 0

(Note that this comes from, see Morse Feshbach I pages 25-35 and
Geometry.tex

∇ · a =
1

h1h2h3

(
∂

∂r
(h2h3a1) +

∂

∂θ
(h1h3a2) +

∂

∂ϕ
(h1h2a3)

)
with

hr = 1

hθ = r

hϕ = R + r cos θ

).

Recall:

ρ ≡ mass density

= nmi

The consequence of this equation is

hρvθ = L (r)

= function of ONLY the surface

We multiply the equation of conservation of momentum ∂v
∂t

+ (v ·∇) v =

− c2s
ρ
∇ρ+ 1

ρ
J×B (1) with hB, at stationarity ∂/∂t = 0,

hB· [(v ·∇) v] = −c
2
s

ρ
hB ·∇ρ+

1

ρ
hB· (J×B)

The last term is identically zero.
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The first term in RHS is the gradient of pressure for constant temperature

B·
(
−1

ρ
∇p
)

= −c
2
s

ρ
hB ·∇ρ

(hence there is variation of the density ρ along the magnetic lines).

The resulting equation will become a Bernoulli-like law

hB· [(v ·∇) v] = −c
2
s

ρ
hB ·∇ρ

It is a balance of forces along the magnetic field and must reflect the
variation on the surface f (θ) of the physical parameters like density n (or
ρ).
The static advection of the plasma along the field is balanced by the vari-

ation of the density (pressure) along the field.

In the paper poloidal rotation growth Rosenbluth Hazeltine Lee
it is written

B· [(v ·∇) v] = B ·∇
(
v2

2

)
+ (∇× v) · (v ×B)

Note that the last term is for small resistivity

−ω · E

or
ηω · J

To calculate (v ·∇) v we use the formulas from geometry.tex notes, or
fromMorse and Feshbach.
At this stage there will be no approximation yet.
The velocity is introduced with the non-zero components which corre-

spond to the lowest order, derived from η = 0 condition

(vr, vθ, vϕ) = (0, vθ, vϕ)

for η = 0

and lowest order in ε

Digression.
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Consider two vectors
A and B

component of (B ·∇) A along ê1

=

(
B1

1

h1

∂

∂ξ1

+B2
1

h2

∂

∂ξ2

+B3
1

h3

∂

∂ξ3

)
A1

+
A2

h1h2

(
B1
∂h1

∂ξ2

−B2
∂h2

∂ξ1

)
+

A3

h1h3

(
B1
∂h1

∂ξ3

−B3
∂h3

∂ξ1

)

component of (B ·∇) A along ê2

=

(
B1

1

h1

∂

∂ξ1

+B2
1

h2

∂

∂ξ2

+B3
1

h3

∂

∂ξ3

)
A2

+
A3

h2h3

(
B2
∂h2

∂ξ3

−B3
∂h3

∂ξ2

)
+

A1

h2h1

(
B2
∂h2

∂ξ1

−B1
∂h1

∂ξ3

)

component of (B ·∇) A along ê3

=

(
B1

1

h1

∂

∂ξ1

+B2
1

h2

∂

∂ξ2

+B3
1

h3

∂

∂ξ3

)
A3

+
A1

h3h1

(
B3
∂h3

∂ξ1

−B1
∂h1

∂ξ3

)
+

A2

h3h2

(
B3
∂h3

∂ξ2

−B2
∂h2

∂ξ3

)

Then for our operators the identifications are

B ≡ v

A ≡ v

and from the general expression we obtain the components

component of (v ·∇) v along êr

= vr
∂vr
∂r

+ vθ
∂vr
r∂θ
− v2

θ

r
−
v2
ϕ

R
cos θ

component of (v ·∇) v along êθ

=

(
vθ

1

hθ

∂

∂θ
+ vϕ

1

hϕ

∂

∂ϕ

)
vθ

+
vϕ
hθhϕ

(
vθ
∂hθ
∂ϕ
− vϕ

∂hϕ
∂θ

)
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We assume that there is no variation along ϕ for the functions involved here.
We insert

∂hϕ
∂θ

=
∂

∂θ
(R + r cos θ) = −r sin θ

or

− sin θ =
1

ε

∂h

∂θ

The components.
On r,

component of (v ·∇) v along êr

= vr
∂vr
∂r

+ vθ
∂vr
r∂θ
− v2

θ

r
−
v2
ϕ

R
cos θ

On θ,

component of (v ·∇) v along êθ

= vθ
1

r

∂vθ
∂θ
−

v2
ϕ

r (R + r cos θ)
(−r sin θ)

Further, on ϕ,

component of (v ·∇) v along êϕ

=

(
vθ

1

hθ

∂

∂θ
+ vϕ

1

hϕ

∂

∂ϕ

)
vϕ

+
vθ
hϕhθ

(
vϕ
∂hϕ
∂θ
− vθ

∂hθ
∂ϕ

)
= vθ

1

r

∂vϕ
∂θ

+
vθvϕ

r(R + r cos θ)
(−r sin θ)

At this moment we have

(v ·∇) v

= êr

[
vr
∂vr
∂r

+ vθ
∂vr
r∂θ
− v2

θ

r
−
v2
ϕ

R
cos θ

]
+êθ

[
vθ

1

r

∂vθ
∂θ
−

v2
ϕ

r (R + r cos θ)
(−r sin θ)

]
+êϕ

[
vθ

1

r

∂vϕ
∂θ

+
vθvϕ

r(R + r cos θ)
(−r sin θ)

]
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We will be interested in the parallel projection of the static inertial term,

B· [(v ·∇) v]

and we must calculate every term.

Returning to the equation of momentum conservation multiplied by hB,
which is a static inertia parallel balance.
We have

hB· [(v ·∇) v] = −c
2
s

ρ
hB ·∇ρ

and replacing the detailed form of [(v ·∇) v], where only the θ and ϕ terms
contribute, we have

Bθh

[
vθ

1

r

∂vθ
∂θ
−
v2
ϕ

Rh
(− sin θ)

]
+Bϕh

[
vθ

1

r

∂vϕ
∂θ

+
vθvϕ
Rh

(− sin θ)

]
= −c

2
s

ρ
hBθ

∂ρ

r∂θ

NOTE that it is here that the diamagnetic velocity cannot be included
since there was a projection along the magnetic field line, - by multiplying
with B. Then this equation is a balance of forces which just describes the
variation of parameters like velocity and density on the magnetic surface.
END.

The radial component of the Ohm’s law

−∂φ
∂r

+

 êr êθ êϕ
vr vθ vϕ
0 Bθ Bϕ

∣∣∣∣∣∣
r

= 0

−∂φ
∂r

+ vθBϕ − vϕBθ = 0

NOTE that it is the classical formula to determine the radial electric
field

Er = B
1

n

1

mΩc

dp

dr
+ (v ×B)θ

and we note that the diamagnetic velocity is neglected.
END

We can eliminate vϕ by expressing it through vθ and the radial derivative
of the potential

vϕ =
1

Bθ

(
−∂φ
∂r

)
+
Bϕ

Bθ

vθ
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we also have

Bϕ

Bθ

=
q

ε

=
1

Θ
� 1

From the first square bracket we take separately the second term. We
have

Bθh

[
−
v2
ϕ

Rh
(− sin θ)

]
=

ε

q

B0

h

(
− 1

R

)
(− sin θ)

[
1

Bθ

(
−∂φ
∂r

)
+
Bϕ

Bθ

vθ

]2

=
ε

q

B0

h

(
− 1

R

)
(− sin θ)

[
1

B2
θ

(
∂φ

∂r

)2

+
q2

ε2
v2
θ − 2

1

Bθ

(
∂φ

∂r

)
q

ε
vθ

]

The first term now becomes

Bθh

[
vθ

1

r

∂vθ
∂θ
−
v2
ϕ

Rh
(− sin θ)

]
= Bθh

1

r

∂

∂θ

(
v2
θ

2

)
+
ε

q

B0

h

(
− 1

R

)
(− sin θ)

1

B2
θ

(
∂φ

∂r

)2

+
ε

q

B0

h

(
− 1

R

)
(− sin θ)

q2

ε2
v2
θ

+
ε

q

B0

h

(
− 1

R

)
(− sin θ)

[
−2

1

Bθ

(
∂φ

∂r

)
q

ε
vθ

]
Few re-formulations for this first term,

Bθh
1

r

∂

∂θ

(
v2
θ

2

)
+

qh

B0ε

(
− 1

R

)
1

ε

∂h

∂θ

(
∂φ

∂r

)2

+
B0

h

(
− 1

R

)
1

ε

∂h

∂θ

q

ε
v2
θ +

(
− 1

R

)
1

ε

∂h

∂θ

q

ε
vθ

[
−2

(
∂φ

∂r

)]
and taking into account that (

− 1

R

)
1

ε
= −1

r

180



first term = Bθh
1

r

∂

∂θ

(
v2
θ

2

)
− h

B0

q

ε

1

r

∂h

∂θ

(
∂φ

∂r

)2

−B0

h

q

ε

1

r

∂h

∂θ
v2
θ + 2

q

ε
vθ

1

r

∂h

∂θ

(
∂φ

∂r

)
NOTE
We draw attention on the occurence of the term ∂

∂θ

(
v2θ
2

)
. This will be

involved in the hose-like "Bernoulli law" applied to the flow in the poloidal
direction.
It is the result of the "inertial" static part [(v ·∇) v] in the momentum

equation.
This is not similar with the term u2 from the transient amplification

Alfven Lau.
That factor, 1 +u2 is a spectral (Fourier) representation of the Laplacian

∆ that acts on ξ1x, the radial component of the displacement due to Alfven
waves.
END

The next (second) term where we will substitute the expression of vϕ is

Bϕh

[
vθ

1

r

∂vϕ
∂θ

+
vθvϕ
Rh

(− sin θ)

]
=

B0

h
hvθ

1

r

∂

∂θ

[
1

Bθ

(
−∂φ
∂r

)
+
q

ε
vθ

]
+
B0

h
h
vθ
Rh

(− sin θ)

[
1

Bθ

(
−∂φ
∂r

)
+
q

ε
vθ

]
which we write

B0

h
hvθ

1

r

(
−∂φ
∂r

)
∂

∂θ

(
1
ε
q
B0
h

)
+
B0

h
hvθ

1

r

1

Bθ

(
− ∂2φ

∂θ∂r

)
+
B0

h
hvθ

q

ε

1

r

∂vθ
∂θ

+
B0

h
h
vθ
Rh

(− sin θ)
1

Bθ

(
−∂φ
∂r

)
+
B0

h
h
vθ
Rh

(− sin θ)
q

ε
vθ

The first contribution to this second term is

B0

h
hvθ

1

r

(
−∂φ
∂r

)
∂

∂θ

(
1
ε
q
B0
h

)
=

B0

h
hvθ

1

r

(
−∂φ
∂r

)
q

ε

1

B0

∂h

∂θ

= vθ
q

ε

1

r

∂h

∂θ

(
−∂φ
∂r

)
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The second contribution to this second term is

B0

h
hvθ

1

r

1

Bθ

(
− ∂2φ

∂θ∂r

)
= B0vθ

qh

B0ε

(
−1

r

∂2φ

∂θ∂r

)
= vθ

q

ε
h

(
−1

r

∂2φ

∂θ∂r

)
The third contribution to this second term is

B0

h
hvθ

q

ε

1

r

∂vθ
∂θ

= B0
q

ε

1

r

∂

∂θ

(
v2
θ

2

)
The fourth contribution to this second term is

B0

h
h
vθ
Rh

(− sin θ)
1

Bθ

(
−∂φ
∂r

)
= B0

vθ
Rh

1

ε

∂h

∂θ

qh

εB0

(
−∂φ
∂r

)
=

vθ
Rε

q

ε

∂h

∂θ

(
−∂φ
∂r

)
= vθ

q

ε

1

r

∂h

∂θ

(
−∂φ
∂r

)
The fifth contribution to this second term is

B0

h
h
vθ
Rh

(− sin θ)
q

ε
vθ = B0v

2
θ

q

ε

1

Rh

1

ε

∂h

∂θ

= B0v
2
θ

q

ε

1

h

1

r

∂h

∂θ

Then the full second term is

vθ
q

ε

1

r

∂h

∂θ

(
−∂φ
∂r

)
+B0

q

ε

1

r

∂

∂θ

(
v2
θ

2

)
+vθ

q

ε
h

(
−1

r

∂2φ

∂θ∂r

)
+vθ

q

ε

1

r

∂h

∂θ

(
−∂φ
∂r

)
+B0v

2
θ

q

ε

1

h

1

r

∂h

∂θ

the first and the fourth contributions are added together and the full second
term is

2vθ
q

ε

1

r

∂h

∂θ

(
−∂φ
∂r

)
+B0

q

ε

1

r

∂

∂θ

(
v2
θ

2

)
+ vθ

q

ε
h

(
−1

r

∂2φ

∂θ∂r

)
+B0v

2
θ

q

ε

1

h

1

r

∂h

∂θ
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Now we put together the first term and the second term

Bθh
1

r

∂

∂θ

(
v2
θ

2

)
− h

B0

q

ε

1

r

∂h

∂θ

(
∂φ

∂r

)2

−B0

h

q

ε

1

r

∂h

∂θ
v2
θ + 2

q

ε
vθ

1

r

∂h

∂θ

(
∂φ

∂r

)
+2vθ

q

ε

1

r

∂h

∂θ

(
−∂φ
∂r

)
+B0

q

ε

1

r

∂

∂θ

(
v2
θ

2

)
+ vθ

q

ε
h

(
−1

r

∂2φ

∂θ∂r

)
+B0v

2
θ

q

ε

1

h

1

r

∂h

∂θ

We note that the underlined terms cancel. Then the left hand side of the
equation of momentum conservation is

Bθh
1

r

∂

∂θ

(
v2
θ

2

)
− h

B0

q

ε

1

r

∂h

∂θ

(
∂φ

∂r

)2

+ vθ
q

ε
h

(
−1

r

∂2φ

∂θ∂r

)
the LHS of momentum equation

A last modification, we replace

Bθh =
ε

q
B0

The right hand side of the equation of momentum conservation takes the
form

−c
2
s

ρ
hBθ

∂ρ

r∂θ
= −c2

s

ε

q
B0

∂

r∂θ
ln ρ

the RHS of momentum equation

These two terms are equal

ε

q
B0

1

r

∂

∂θ

(
v2
θ

2

)
+B0

q

ε

1

r

∂

∂θ

(
v2
θ

2

)
− h

B0

q

ε

1

r

∂h

∂θ

(
∂φ

∂r

)2

+ vθ
q

ε
h

(
−1

r

∂2φ

∂θ∂r

)
= −c2

s

ε

q
B0

∂

r∂θ
ln ρ

We multiply everything by
ε

q
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and divide everything by B0.

1

r

∂

∂θ

(
v2
θ

2

)(
1 +

ε2

q2

)
− 1

B2
0

[
1

r

∂

∂θ

(
h2

2

)](
∂φ

∂r

)2

− vθ
B0h

h2

(
1

r

∂2φ

∂θ∂r

)
= −c2

s

(
ε

q

)2
∂

r∂θ
ln ρ

Note. We need to substitute

vθ →
1

B0/h

(
∂φ

∂r

)
=

1

BT

(
∂φ

∂r

)
such that the last term on the left becoms

− vθ
B0h

h2

(
1

r

∂2φ

∂θ∂r

)
→ − 1

B2
0

(
∂φ

∂r

)
h2

(
1

r

∂2φ

∂θ∂r

)
and then we get

1

r

∂

∂θ

(
v2
θ

2

)(
1 +

ε2

q2

)
− 1

B2
0

[
1

r

∂

∂θ

(
h2

2

)](
∂φ

∂r

)2

− 1

B2
0

h2

2

1

r

∂

∂θ

[(
∂φ

∂r

)2
]

= −c2
s

(
ε

q

)2
∂

r∂θ
ln ρ

or

1

r

∂

∂θ

(
v2
θ

2

)(
1 +

ε2

q2

)
− 1

r

∂

∂θ

[
1

B2
0

h2

2

(
∂φ

∂r

)2
]

+
1

r

∂

∂θ

[
c2
s

(
ε

q

)2

ln ρ

]
= 0

1

r

∂

∂θ

[(
1 +

ε2

q2

)
v2
θ

2
+ c2

s

(
ε

q

)2

ln ρ− 1

B2
0

h2

2

(
∂φ

∂r

)2
]

= 0

The second order term ε2/q2 from the paranthesis multiplying v2
θ/2 will be

neglected.

A Bernoulli law

∂

∂θ

[
v2
θ

2
+

(
ε

q

)2

c2
s ln ρ−

(
∂φ

∂r

)2
h2

2B2
0

]
= 0
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Comment
The flow is "static", there is no time variation.
Then we only describe the spatial variations.
End

Normalization

vθ → u =
q

ε

vθ
cs

poloidal velocity

vz → v =
vz
cs

toroidal velocity

E =
q

ε

1

cs

h

B0

∂φ

∂r
radial electric field

NOTE that the first normalization introduces the poloidal projection of
the sound speed

cs
ε

q
= cs

Bθ

BT

= cθs

In the papers of Friedberg on the shock solutions and their evolution
from radially directed to circles in the poloidal plane (as magnetic surfaces)
it is reminded that the poloidal projection of the parallel sound speed is zero
in the center and is zero at the edge of the plasma.
note also that this is in Stringer1969 PRL see 025_stringer.
END.

NOTE that the last normalization introduces a new poloidal velocity

E ≡ normalized poloidal velocity

=

1
B0/h

∂φ
∂r

cθs
=
vθE
cθs

END.
Defining

E ≡ q

ε

1

cs

1

B0

∂φ

∂r
we separate in this way the factor which does not contain any poloidal θ
variation and we have

E = E h = E (1 + ε cos θ)

The zeroth-order equations, i.e. η = 0 are

hρu = L (r) (arbitrary function of r)

E = Eh = E (1 + ε cos θ)

u2

2
− E2

2
+ ln ρ = K (r) (arbitrary function of r)
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the last equation ("Bernoulli law") means that K (r) does not depend on the
poloidal variable θ.

∂

∂θ
K (r) = 0

Also remember that the first equation comes from the continuity.

∇· (ρv) = 0

∂

∂θ
(hρvθ) = 0

after normalization of vθ.

The system is reduced by extracting ρ from the first equation and replac-
ing it in the "Bernoulli "-like equation

ρ =
L

hu

u2

2
− E2

2
+ ln

(
L

hu

)
= K (r)

u2

2
− E2

2
− ln (hu) = K − lnL

u2

2
− E2

2
− ln (u)− ln (1 + ε cos θ) = K − lnL

u2

2
−
(
Eh
)2

2
− ln (u)− ε cos θ ≈ K − lnL

It is defined the quantity

f (u) ≡ u2

2
− ln |u|

and its average over the surface

f =
1

2π

∫ 2π

0

dθf

we have
f (u) = f (u) +

(
1 + E

2
)
ε cos θ

This is an already interesting result.
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The function u2/2 − ln |u| has a correction that is harmonic ε cos θ on
the poloidal direction, like the Pfirsch Schluter toroidal current. This result
does not have any connection with the Pfirsch Schluter current since the
damagnetic flow (implicitely ∇p) has not been involved.
The geometry constraints the expression u2/2− ln |u| to have a variation

on the poloidal direction θ. Since this combination involves poloidal velocity
it results that the way plasma rotates on the magnetic surfaces in the poloidal
direction must be variable with θ, even at stationarity of the flow.
This is the hose effect.

The function u2/2− ln |u| has two minima

u = ±1

For given f and angle θ the Bernoulli equation for u gives four solutions.
The minima of the function corresponds to the critical speed

|u| = 1

where the poloidal velocity is equal to the sound velocity projected along the
poloidal direction

ε

q
cs

The acoustic waves propagate along the magnetic field lines with cs .
And the plasma rotates in the poloidal direction with u . The result is that
the velocity of the waves on the poloidal direction is zero, since there is
compensation.
NOTE
See also the explanation of Peeters on bootstrap.
END.

The quantity

u2

2
−
(
Eh
)2

2
− ln (u)− ε cos θ ≈ const on θ

can be used to see how are correlated the θ variations in the surface.
There is a function

−
(
Eh
)2

2
− ε cos θ ≈ −

[
E

2
(

1

2
+ ε cos θ

)
+ ε cos θ

]
= ct− ε

(
E

2
+ 1
)

cos θ

∼ α− β cos θ
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and
f (u) + α− β cos θ ≈ const on θ

When |cos θ| is small we have f (u) large.
When θ grows from θ = 0 to π/2 the term |β cos θ| decreases from |β|

to 0 therefore the function f (u) must increase to keep the whole expression
constant =ct-α.
When θ = π/2 the function |β cos θ| is zero and the function f (u) is

maximum.
When θ grows from π/2 to π the function −β cos θ increases from |β| and

the function f (u) must decrease to keep the sum constant.

The minimum value of the combination u2/2 − ln |u| is 1/2 and corre-
sponds to the critical poloidal velocity |u| = 1.
Then the function must be larger than

f ≥ 1

2
+ aε

The function f close to the minimum 1/2 corresponds to a poloidal veloc-
ity u that has certain particularities since it is close to the singularity given
by the cancellation of the velocity of the acoustic waves, |u| = 1.
For velocities u such that the function u2/2− ln |u| is far from the mini-

mum, the flow has a different pattern.

18.2.1 The regime of poloidal rotation which is far from the crit-
ical value

Consider the poloidal velocity expanded around the equilibrium value

u = u+ δu

and

f (u) =
u2

2
− lnu

+

(
u− 1

u

)
δu+

1

2

(
1 +

1

u2

)
(δu)2

For velocities u that are far from the critical value |u| = 1, which means

u− 1� δu

2
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the term (δu)2 is neglected and the equation for the calculation of δu is

f (u) =
u2

2
− lnu+

(
u− 1

u

)
δu

f (u) + aε cos θ =
u2

2
− lnu+

(
u− 1

u

)
δu

u2

2
− lnu+ aε cos θ =

u2

2
− lnu+

(
u− 1

u

)
δu

aε cos θ

u− 1
u

= δu

or

δu = εu
E

2
+ 1

u2 − 1
cos θ

+O
(
ε2
)

With this expression for the poloidal velocity u + δu we return to the
continuity equation

hρu = L (r)

where we now admit the variation of the density on the magnetic surface

ρ = ρ+ δρ

Using the expression of the poloidal velocity u with harmonic correction, we
obtain

δρ = −ρ
(
δu

u
+ ε cos θ

)
+O

(
ε2
)

or

δρ ≈ −ρ ε cos θ

(
1 +

E
2

+ 1

u2 − 1

)
We have derived the variation of the density on the magnetic surface, and

found that it is harmonic like that of the poloidal rotation u.

There is also the θ-variation in the magnetic surface of the toroidal veloc-
ity.
The absence of resistivity η = 0 specifies the zeroth order Ohm’s law

−∂φ
∂r

+ (v ×B)r = 0
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which in normalized variables is

v = u− E

Now we assume a small θ-dependent departure from the average value

δv = v − v

δv = δu− Eε cos θ +O
(
ε2
)

δv ≈
(
−E + u

E
2

+ 1

u2 − 1

)
ε cos θ

We have derived the θ dependent velocities of the flows in the magnetic
surface, when these are far from the critical one vc.

18.2.2 The regime of the poloidal rotation that is close to the
critical velocity

The regime is characterized by

u− 1 . δu

2

The order (δu)2 cannot be neglected.
Then

−2 (1− u) δu+ (δu)2

= (δu)2 + aε cos θ

The authors make the observation that

u (π) ≈ 1

where
∂f

∂θ
= 0 at u = 1

The reason for this is the physical acceleration of the fluid when going to
a narrower zone of the duct. The velocity must increase to keep the flux
constant but the limit is, as choosen by us, the critical velocity

|u| ≈ 1
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after traversing the narrowest section, at θ = π the fluid can deccelerate.
Then

δu ≈ 1− u±
√
ε
(

1 + E
2
)

(1 + cos θ)

The other variables have the following corrections

δρ ≈ −ρ
u

{
1− u±

√
ε
(

1 + E
2
)

(1 + cos θ)

}

δv ≈ 1− u±
√
ε
(

1 + E
2
)

(1 + cos θ)

18.2.3 The current.

From the equation of conservation of the momentum.
There is toroidal flow

v = vϕ

and its velocity vϕ has θ variation.
The toroidal flow is connected with the radial current ∼ vr and with the

poloidal magnetic field Bθ through the usual jr ×Bθ = acceleration on ϕ.
The radial component

Jr = c2
s

1

B0

ρu
∂

r∂θ
(hv)

This radial current has 0 average on the magnetic surface, via the peri-
odicity in θ of the factors.

Here a comment is needed: the existence of a radial current appears to be
in contradiction with vr = 0 the first derived result in zeroth order (η = 0 and
no θ dependence, i.e. ε = 0). But since there is a toroidal flow, v ≡ vϕ 6= 0,
then the product

Jr ×B|ϕ = envr ×B|ϕ = JrBθ

= ρ (v ·∇) v|ϕ ,

where
ρ = nmi
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is calculated using the formula derived before

(v ·∇) v

= êr

[
vr
∂vr
∂r

+ vθ
∂vr
r∂θ
− v2

θ

r
−
v2
ϕ

R
cos θ

]
+êθ

[
vθ

1

r

∂vθ
∂θ
−

v2
ϕ

r (R + r cos θ)
(−r sin θ)

]
+êϕ

[
vθ

1

r

∂vϕ
∂θ

+
vθvϕ

r(R + r cos θ)
(−r sin θ)

]

(v ·∇) v|ϕ = vθ
1

r

∂vϕ
∂θ

+
vθvϕ

r(R + r cos θ)
(−r sin θ)

= vθ

[
1

r

∂vϕ
∂θ

+ vϕ
1

r

1

h

∂h

∂θ

]
= vθ

1

h

[
h
∂vϕ
r∂θ

+ vϕ
∂h

r∂θ

]
=

vθ
h

∂

r∂θ
(hvϕ)

From this we obtain

JrBθ = ρ
1

h

(
vθ

∂

r∂θ

)
(hvϕ)

Jr = ρ
1

Bθ

1

h

(
vθ

∂

r∂θ

)
(hvϕ)

At this moment we must take into account the normalization of the velocities

vθ → u =
q

ε

vθ
cs

vϕ → v =
vϕ
cs

Then

Jr = ρ
1

Bθ

1

h

[
ε

q
csu

∂

r∂θ
(hcsv)

]
= c2

sρ
1

Bθ

1

h

ε

q

[
u
∂

r∂θ
(hv)

]
= c2

sρ
1

BT

1

h

[
u
∂

r∂θ
(hv)

]
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and since

BT =
B0

h

it results

Jr = c2
sρ

1

B0

[
u
∂

r∂θ
(hv)

]

The poloidal component is derived from the same static momentum bal-
ance equation

(v ·∇) v = −c2
s

1

ρ
∇ρ+

1

ρ
J×B

We note that there is only one possibility to involve the diamagnetic flow,
which is to include the gradient of pressure. The force balance is based on
the gradient of the pressure (density) and the term J×B. This is balanced
by the stationary inertial term (v ·∇) v.

To evaluate the LHS contribution we project along r (since this involves
J⊥) and we use the formula

component of (v ·∇) v along r

= vr
∂vr
∂r

+ vθ
∂vr
r∂θ
− v2

θ

r
−

v2
ϕ

R0h
cos θ

We must use the equation of continuity

∇ · (ρv) = 0

with the formula

∇ · a =
1

h1h2h3

(
∂

∂r
(h2h3a1) +

∂

∂θ
(h1h3a2) +

∂

∂ϕ
(h1h2a3)

)
where

hr = 1

hθ = r

hϕ = R0 + r cos θ
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This gives

∇· (ρv)

=
1

rR0h

[
∂

∂r
(rR0h ρvr) +

∂

∂θ
(R0h ρvθ) +

∂

∂ϕ
(rρvϕ)

]
=

1

rh

(
hρvr + r

cos θ

R0

ρvr + rhvr
∂ρ

∂r
+ rhρ

∂vr
∂r

)
+

1

rh
ρ

(
−r sin θ

R0

vθ + h
∂vθ
∂θ

)
= ρ

vr
r

+
cos θ

hR0

ρvr + vr
∂ρ

∂r
+ ρ

∂vr
∂r
− ρsin θ

hR0

vθ + ρ
∂vθ
r∂θ

= 0

This expression may serve to extract some of the terms from this equation
and to replace them in ρ (v ·∇) v|r. This should allow to to calculate J⊥
and after it, the projection J⊥θ.

J⊥θ = c2
s

1

B0

ρh

(
1

ρ

∂ρ

∂r
− v2

h

∂h

∂r

)
The first term is diamagnetic

env⊥θ =
Te
mi

1(
B0
h

) d (nmi)

dr

v⊥θ =
Te
eB

d

dr
lnn

The second term is

−c2
s

1

B0

ρv2
z

(
cos θ

R0

)
and looks like an approximation of the neoclassical particle drift flow, like in
Stringer.

The poloidal (θ) average of the poloidal component of the parallel current
is zero

J‖θ

and

J‖θ ≈ −2c2
s

1

B0

ε cos θ
∂

∂r

[
ρ

(
1 +

v2

2

)]
Using the θ part of the perpendicular and of the parallel current we obtain

Jz =
q

ε
J‖θ −

ε

q
J⊥θ
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18.2.4 The radial velocity and the poloidal electric field at zeroth
order (for low η)

The resistivity gives the Ohm’s law

vr = η
Jz
Bθ

vr ≈ −ηc2
s

(
1

B2
0

){
2
(q
ε

)2 ∂

∂r

[
ρ

(
1 +

v2

2

)]
hε cos θ

}
Here it is noted that vr has a factor of order

ε−1

and has zero poloidal average.

The poloidal electric field

−Bθ
∂φ

r∂θ
= ηB · J

= η
B0

h

q

ε
J‖θ

or
∂φ

r∂θ
≈ 2η

(q
ε

)2 1

B0

c2
s

∂

∂r

[
ρ

(
1 +

v2

2

)]
ε cos θ

These are solutions: uniform on the magnetic surface plus corrections
depending on θ, stationary, generated by the

• geometry

• the presence of a small resistivity

Now there will be time variation.
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18.2.5 Time variation of the plasma variables between equilibrium
states

The equation of momentum is multiplied by

hB

resulting

∂

∂t
(hB · v) + hB ·∇

(
|v|2

2
+ c2

s ln ρ

)
= hB· [v× (∇× v)]

We note that the first term in the paranthesis and the right hand side term
represent (v ·∇) v part of the convective derivative dv/dt. The term ln ρ
results from the assumed expression for the pressure, with T =const.
Using the Ohm’s law the RHS is written

hB· [v× (∇× v)] = −h [∇× v·ηJ +∇· (v ×∇φ)]

After averaging over θ,

∂

∂t
(hB · v) =

1

r

∂

∂r

[
r

(
hvz

∂φ

r∂θ

)]
− η (h∇× v · J)

It is remarked that the variation of the electrostatic potential on the
magnetic surface θ is of the order of the resistivity η, which means that the
time variation induced by it is on the resistive time scale.
In the present problem ∇φ is the variation of the electrostatic potential

on the magnetic surface,
∂φ

r∂θ

[and here we ma recall the expression that has already been derived

∂φ

r∂θ
≈ 2η

(q
ε

)2 1

B0

c2
s

∂

∂r

[
ρ

(
1 +

v2

2

)]
ε cos θ

In applying the Ohm’s law the last term is

∇· (v ×∇φ)→ 1

r

∂

∂r

[
rh vz

∂φ

r∂θ

]
which is further averaged over θ.
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Note that the averaging over θ of terms that are periodic on θ gives zero
and this is the reason for the disappearence of the second term of the LHS.
The first term

1

r

∂

∂r

[
r

(
hvz

∂φ

r∂θ

)]
arises from the parallel resistivity is related to the divergence of a mass flux
and is positive. This is the term that causes the rotational speed-up.

The scond term

η (h∇× v · J)

≈ η
1

B0

c3
s

[
ρ u

(
∂v

r∂θ

)2

− ∂ρ

∂r

∂v

∂r

]

The time variation of the zeroth order parameters.
There are conservation equations.
Conservation of mass

∂

∂t
(hρ) +

1

r

∂

∂r

[
r (hρvr)

]
= 0

Conservation of momentum

∂

∂t
(h2ρv) +

1

r

∂

∂r

[
r (h2ρv vr)

]
= 0

Using these cnservation equations together with the equation (above)

∂

∂t
(hB · v) =

1

r

∂

∂r

[
r

(
hvz

∂φ

r∂θ

)]
− η (h∇× v · J)

one obtains

∂

∂t
v +

(
ε

q

)2
∂

∂t
u

=
1

r

∂

∂r

[
r A‖

(
u− 2v − 2

ε
cos θ δu

)]
−A⊥

[
∂v

∂r
− ρu 1

∂ρ
∂r

(
∂v

r∂θ

)2
]
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where

A‖ = −η‖c2
s

1

B2
0

q2 ∂

∂r

[
ρ

(
1 +

v2

2

)]
A⊥ = −η⊥c2

s

1

B2
0

∂ρ

∂r

if the resistivity would be different η‖ 6= η⊥.

The mass flux
F ≡ (hρvr)

F = L (r)×
(vr
u

)
and this is expanded to lowest order in ε

F ≈ ρ

[
vr −

(
vr
δu

u

)
+ vr

(
δu

u

)2
]

The flux of angular momentum is

(h2ρv vr) = L
(hv vr)

u

≈ ρ u (hvr)− ρ E
(

h2vr

1 + δu
u

)
where it has been used

v = u− E
the radial projection of the Ohm’s law.
The lowest order expression is

(h2ρv vr) = (v − u)F

+ρu A⊥

+2ρv A‖

where
vr = A‖ + A⊥

When the velocity on poloidal direction u is far from the critical velocity
(sound speed projected on poloidal direction)

u� 1
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the second order term, with (δu)2 can be neglected, and u has the θ variation
that has been derived in the first case. Next, oit is possible to calculate the
average over θ of the second term in the expansion of F since we use the
expression for δu derived before.
The mass flux becomes

F =

[
A‖

(
1 +

a

1− u2

)
+ A⊥

]
ρ

or

F = −ηc2
s

1

B2
0

ρ

{
∂ρ

∂r
+ q2

(
1 +

1 + (u− v)2

1− u2

)
∂

∂r

[
ρ

(
1 +

v2

2

)]}

This expression generalizes the Pfirsch Schluter flux for the case of the
presence of a velocity of a flow v 6= 0.
The Pfirsch Schluter mass flux is

FPS = −ηc2
s

1

B2
0

(
1 + 2q2

)
ρ
∂ρ

∂r

obtained from above for v = 0.

18.2.6 Comment on comparison with Transient Alfven Amplifica-
tion

Transient Alfven Lau Davidson Hui.
This work is commented upon in plasma, general, theory, Alfven.

This image is stationary.
There is flow in the surface and the velocity has spatial variation on

surface.
The density has spatial variation - so there is gradient of pressure (=

force).
These forces nmi [(v ·∇) v] (inertial part of the momentum conservation)

and−∇pmust compensate each other, along a magnetic field line (to exclude
j×B).
The inertial term will produce

v2
θ

2

under the θ-derivation operator (plus others).
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When we compare with
∂2

∂t2
∇2ξ1x

of Lau transient Alfven amplification we cannot find the factor 1 + u2

which, in that case, produces an effect like the hose. A narrow profile (in
spectral space) that produces for a wave packet an amplification when it
traverses that zone.
One of the operators ∂/∂t comes from the connection between the dis-

placement ξ1 and the velocity v1 both of order 1. The other operator ∂/∂t
comes from nmi

∂v1
∂t
, the momentum conservation. The Laplacian ∇2 comes

from applying ∇× (∇×...) operator on the momentum conservation. The
result will consist of Laplacian (due to the zero-divergence of ξ1 and of B1).
Therefore the inertial aspect consists of ∂/∂t part of d/dt, not of the

(v ·∇) v.
However the second time derivative (explicit time variation from inertial

dv/dt) is not at the origin of the factor that becomes narrow 1 + u2. This
factor is produced by the Laplacian, after Fourier transform.

18.3 Multiple equilibria and poloidal rotation instabil-
ities (Ware Wiley)

The paper byWare Wiley mentions that the plasma is unstable to poloidal
rotation.
the rate of instability is small, proportional with the resistivity.
[see Stringer in impurity accumulation Notes, or in stringer.]
Usual neoclassical assumption
any mass motion of the plasma is at most first order in

ρiθ
L

for motion ‖ B

for motion parallel to B,
and is at most first order in

ρi
L

for motion ⊥ B

for any motion in perpendicular direction ⊥ B.
The condition of equilibrium of the poloidal rotation is

mn
∂V θ

∂t
= −

〈(
P̃‖ − P̃⊥

)
sin θ

〉
R

= 0
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NOTE that later we will have Shaing Crume to say that

min
∂vθ
∂t
≈ 〈B ·∇ ·Π〉

with the parallel viscosity calculated from the drift-kinetic equation. However
this is for relaxation or damping of the poloidal rotation. Not for driving.
END.
where

mn ≡ ρ plasma density

To first order in
ρiθ
L

we have
P̃e‖ = P̃e⊥ = −P̃i‖ = neΦ̃

where n ≡ 〈n〉.
Then the condition of equilibrium in order

ρiθ
Ln

ρ
∂V θ

∂t
=

〈(
P̃i‖ − P̃i⊥

)
sin θ

〉
R

= 0

Now it is used the expression for the difference P̃i‖ − P̃i⊥ for the plateau
regime

ρ
∂V θ

∂t
= −
√
π

2
nmivthi

r

R2

[
V ‖ −

Er
Bθ

+
Ti
eBθ

(
n′

n
+

3

2

T ′i
Ti

)]
To first order

V θ =
Bθ

B
V ‖ −

Er
B

+
p′i
neB

(which is simply the very popular equation for the determination of Er in
experiments). Then introducing Bθ

B
V ‖− Er

B
from this expression in the square

bracket above it results the slow time variation (higher than lowest order) of
the poloidal rotation velocity

ρ
∂V θ

∂t
= −

√
π

2
nmivthi

q

R

(
V θ +

T ′i
2eB

)
= 0
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Then the equilibrium is

V ‖ −
Er
Bθ

= − Ti
eBθ

(
n′

n
+

3

2

T ′i
Ti

)
or

V θ =

[
−1

2

]
× 1

eB

dTi
dr

This is the well-known result about the equilibrium poloidal rotation in toka-
mak. (Hazeltine and Hinton).
Here it is the plateau regime.
In the banana regime, the coeffi cient −1/2 is replaced by +1.17.
In the Pfirsch-Schluter regime the coeffi cient −1/2 is replaced by −2.1.
See also Novakovskii Liu Sagdeev Rosenbluth for polarization, very

fast changes, GAM.

Orders of magnitude, after taking

vth,j ∼ 1

V e,i ‖ ∼
ρe,i θ
L

Ṽe,i ‖ ∼
( r
R

) ρe,i θ
L

= ε
ρe,i θ
L

V i⊥ ∼
( r
R

) ρe,i θ
L

= ε
ρe,i θ
L

Ṽe,i ⊥ ∼
( r
R

)2 ρe,i θ
L

= ε2
ρe,i θ
L

Ve,i r ∼
( r
R

)2 (ρe,i θ
L

)2

= ε2
(ρe,i θ

L

)2

The equation of continuity to the first order in ρiθ/L for the species
j ≡ e, i, Z

∂ñj
∂t
− Er
B

∂ñj
r∂θ

+Bθ
∂

r∂θ

(
njVj‖
B

)
− 2 sin θ

ZjeBR

(
p′j − njZjeEr

)
= 0
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18.4 System of equations taking into account the SOL
rotation (McCarthy et al)

This system is derived by McCarthy, Drake, Guzdar and Hassam PF
B5 (1993) 1188.
In the paperMcCarthy, Drake, Guzdar and Hassam PF B5 (1993)

1188 it is reviewed the variety of regimes of relation between the diamagnetic
velocity and poloidal rotation velocity.
In the H-mode the poloidal velocity can exceed the diamagnetic velocity

vθ >
csρs
Ln

It has been found that

Er > 0 outward in SOL, changes sharply to

Er < 0 inward inside the LCFS

In TEXT, inside relative to the separatrix

Er ' −30 (V/cm) , which means

vθ ' 3× vdia

In SOL, in TEXT, the electric field scales typically for a plasma sheath as
derived from the condition

eφ

Te
∼ 1

Er ∼ −
∂Te
∂r

and the poloidal rotation velocity is about fourtimes the diamagnetic velocity

vSOLθ ∼ 4× vdia

In this paper it is explained that the magnetic pumping damps out the
poloidal rotation and the pressure gradient (i.e. the diamagnetic flow) is
balanced by a radial electric field

E×B ∼ ion diamagnetic velocity

However, in experiments it is found

vθ = 3...5 × vdia
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A simplified form of the equation for the poloidal rotation

∂vθ
∂t

= − ∂

∂r

(
ṽrṽθ

)
+

c2
s

Rn
2(n sin θ)

from where it is concluded that the Reynolds stress term is much less than
the Stringer term.

NOTE
The convective cell that can be generated according to Kuo, Shapiro,

at the plasma edge, leading to the H -mode layer, is a source of variation of
the density over the surface. This is because the flow should be initiated at
the hot surface, which is in the interior of the plasma and will be directed to
the edge, where it follows the poloidal direction and closes at some distance
(poloidally) from the equator. The flow is initiated in a region with higher
density,

n (r < a) > n (r = a)

and this density is carried over the last closed magnetic surface. On this
surface the enhanced density will not be uniform in the first stage of the for-
mation of the convective cell. This non-uniformity leads to an enhancement
of the Stringer effect which accelerates the flow in the poloidal direction.

See also Rozhansky for the angular momentum one-dimensional equa-
tion, based on transport from SOL.

18.5 The Pfirsch-Schluter flow and the basics of spin-
up

For a poloidally rotating plasma, there exist flows in the toroidal direction
which are necessarly associated to the poloidal rotation. There cannot be
a purely poloidally rotating plasma.
The origin of these harmonic toroidal flows is the (approximate) incom-

pressibility of plasma
∇ · v ≈0

The flux tubes rotating poloidally compress and decompress alternatively,
thus driving flows along the tube in order to maintain the zero-divergence of
the total flow velocity.
NOTE however that we should use the equation of continuity

∇· (nv) = 0

END.
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It can be shown that there is the following connection between the two
(poloidal and toroidal) averaged velocities defined above and the local veloc-
ities varying on the magnetic surface

vθ = Vpol
R0

R

or,

vθ (r, θ) =
Vpol (r)

1 + ε cos θ

and
vϕ ' Vtor − 2qVpol cos θ

Thus, if there is a poloidal velocity vθ 6= 0 there is a harmonic
component of the toroidal flow, even if there is no average toroidal
flow.

NOTE an extension of this argument for the "diamagnetic " flow gener-
ated by the gradient of density interacting with the banana trajectories. The
banana trajectories, projected on the poloidal plane, have a density that is
modulated from the center r = 0 to the edge r = a by the fraction of trapping√
ε. This is an equivalent diamagnetic flow, poloidal, with the velocity

vbananaθ =
ρbananas cs
Ln

=
(width)bananaion cs

Ln

The electrons, however, have smaller flow since the for them the width of the
banana is smaller. This diamagnetic-type flow must generate an equivalent
Pfirsch-Schluter flow, harmonic on the meridional section.

The paper by Nycander Yankov shows that when the parallel flow
is strong, the high value of the parallel velocity will alter the condition of
trapping for many ions, some of the trapped ions will get untrapped. Then we
will have a substantial change in the "equivalent Pfirsch-Schluter" harmonic
current.
Actually, we should examine what happens when there is a strong toroidal

rotation, in general: the ions may get a ordered motion along the bananas,
much more would go in one direction on the trapping trajectories than in the
opposite direction. In this case what happens is a substantial increase (ac-
tually from quasi-zero) of the banana-diamagnetic flow and correspondingly
the generation of the associated Pfirsch-Schluter current.
END
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18.6 Spontaneous poloidal spin-up (Hassam Drake)

See impurity accumulation, Notes.
It should be collected in plasma, general, studies, Stringer.

See [16].
When the particle diffusion is poloidally asymmetric and the local particle

confinement time is shorter than the damping time of the poloidal rotation,
the poloidal rotation is unstable. The plasma can spontaneously spin-up.
We should study the the connection which can exist between the plasma

rotation induced by the asymmetric diffusion and the localization in poloidal
direction of the perturbation of the envelope of the ITG turbulence, verifying
the Nonlinear Schrodinger Equation. It might be an interplay:

• the localization induced by the NSE in the poloidal direction exerts an
influence on the rate of diffusion and supports an asymmetric flux of
particles;

• the plasma rotation arising from the asymmetric diffusion exerts an
influence on the localization of the envelope governed by NSE.

The equations describing the plasma rotation are:

∂n

∂t
+

1

r

∂

∂r
(rnvr) = 0

∂

∂t
(nVϕ) +

1

r

∂

∂r
[rn (Vϕvr − qVθṽr)] = 0

∂

∂t

[
Vϕ + Θ

(
1 + 2q2

)
Vθ
]

+ vr
∂Vϕ
∂r
− ṽr

∂

∂r
(qVϕ) +magnetic pumping = 0

The definition of the variables is

n = 〈n (r)〉

nVϕ (r) ≡
〈
nvϕ

R

R0

〉
Vθ (r) =

〈
vθ
R

R0

〉
and the magnetic field is

B = (0,Θ (r) , 1)
B0 (r)

R/R0
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R = R0 + r cos θ

q =
r

R0

Θ

The surface average is made according to the formula

〈f〉 =

∮
dθ

2π

R

R0

f

The quantities ṽr and vr are velocities which arise from diffusive fluxes
in the radial direction. They are defined from the expressions of the radial
fluxes. It is known that any friction force which is exerted in the magnetic
surface and is not parallel to the magnetic field generates a particle flux in
the radial direction. The equation of motion at equilibrium

0 = −∇pα + eαnαE + eαnαVα×B + Rin,α

which is dot-multiplied by the versor of the poloidal direction, êθ:

0 = 0 + 0 + eαnαBVα,r +Rin,α,θ

from this formula it results

nαVα,r = − 1

eαB
Rin,α,θ

This is the radial diffusive flux induced by the friction forceRin,α which act
in the poloidal direction. This is the usual effect of the combination between
a force Rin,α and the magnetic field, generating a drift of the particles as
R×B/B2.
From this formula we define the two velocities

vr = 〈Vα,r〉

Note the fact that an average radial velocity exists is a result of the
assumption that there is a non-zero averaged radial diffusion flux. End.

The part that has poloidal θ variation

ṽr = 〈2 cos θ Vα,r〉
The second velocity has a trigonometric variation on the poloidal di-

rection. This asymmetry can be induced by the poloidal variation of the
diffusive flux (related to a poloidal variation of the friction force Rin) or,
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simply because the radial diffusive flux depends on the poloidal coordinate
(has poloidal asymmetry):

ṽr ∼
δD

Ln

where D is the diffusion coeffi cient. Even the Pfirsch-Schluter coeffi cient is
suffi cient to induce such a poloidal variation.
Poloidal spin-up occurs when the solution of the equation for the poloidal

velocity is growing. The equation is:

Θ
(
1 + 2q2

)(∂Vθ
∂t

+ γMPVθ

)
+ qVθ

1

n

1

r

∂

∂r
(nrṽr) = 0

Here γMP is the magnetic pumping damping rate of the poloidal
rotation.

18.7 Poloidal rotation induced by variation of parame-
ters over the magnetic surface

The paperMultiple Equilibria poloidal rotation Ware Wiley.
The order of the time derivative

ω ∼ ρiθ
L

Ωc,i

is the frequency associated to adjustments between different equilibria.
The time derivative of of the toroidal velocity is very small

∂V ϕ

∂t
∼ r

R

∂Vθ
∂t

and implies the same order for the time variation of the parallel velocity

∂V‖
∂t
∼ r

R

∂Vθ
∂t

since
Bθ

B
∼ r

R

It results
∂V θ

∂t
' − 1

B

∂Er
∂t

This is actually the usual equation for Er, time-derivated and with time
vatiations of the other components, vϕ and diamagnetic, taken zero. (From
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here the neoclassical polarization explanation of poloidal-toroidal connection
can start).
The momentum balance on perpendicular on B direction∑

j

njmj

(
∂Vj⊥
∂t

+ (Vj ·∇)Vj⊥

)
= −Bϕ

B

∂P⊥
r∂θ

−Bϕ

B

(
P‖ − P⊥

)
sin θ

R
−ê⊥ ·∇ · π
−JrB

The parallel projection of the momentum equation∑
j

njmj

(
∂Vj‖
∂t

+ (Vj ·∇)Vj‖

)
= −Bθ

B

∂P‖
r∂θ

+
Bθ

B

(
P‖ − P⊥

)
sin θ

R
−ê‖ ·∇ · π

From these two equations we can write a new equation, this time for the
poloidal component of the plasma rotation

njmj

(
∂Vjθ
∂t

+ (Vj ·∇)Vjθ

)
= − ∂

r∂θ
P‖

+B2
ϕ

∂

r∂θ

(
P‖ − P⊥
B2

)
+

(
P‖ − P⊥

)
sin θ

R
−JrBϕ

−êθ ·∇ · π

See also Zhu Horton Sugama.
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The equation of continuity for the part of the density that is varying over
the magnetic surface.
The equation of continuity for the species j to first order in ρiθ/L (Ware

Wiley)

∂ñj
∂t
− Er
B

∂ñj
r∂θ

+Bθ
∂

r∂θ

(
ñjV j‖

B

)

−2 sin θ

R

1

ZjeB

(
pj − njZjeEr

)
= 0

To first order the follwoing relationship exists between the poloidal and
parallel velocities

V θ =
Bθ

B
V ‖ −

Er
B

+
p′i
neB

Then the equation of continuity, this time for the part of the density of
impurity Z that varies over the magnetic surface, similar to the eqaution
written above for a general species j is

∂ñz
∂t

+Bθ
∂

r∂θ

(
ñzV zθ

Bθ

)
= 0

18.8 Radial current in tokamak

this is from Novakovskii where the formula is derived

〈jr〉 = 〈nvi,r〉

=

(
1 + q2 +

q2

(ε3/2ν∗)
1/3

)
m2c2

B2

∂Er
∂t

This is a polarization current, induced by the fast time variation of the radial
electric field.
A discussion about the radial current generated by a fast rise of Er is in

Chang White icrh rotation.
Essentially, the phases are

• Er is created on a very short time scale, by charge separation, due for
example to the banana width change at ICRH one has a displacement
of the center of the banana, which means a radial current.
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• The fast rise of Er produces a polarization current jpr which is propor-
tional with ∂Er/∂t and the dielectric constant ε⊥ which is very large.
There is classical and neoclassical polarization. The latter is much
higher since it involves the banana width.

• then the bulk plasma responds by creating a counter-current which will
become equal to the polarization one

jret = jpr

and will produce a torque on the bulk ions.

See the discussion in Honda.

18.9 Radial electric field in tokamak

The paper Density Clumping by Shaing, Houlberg, Crume in Com-
ments 12 (1988) 69 discusses the effect of the radial electric field becoming
more negative as a source for particle improved confinement in tokamak.
It has been observed that a more negative Er in tokamak leads to:

1. particle confinement τ p increases with negative Er and

2. the impurities are accumulating in the center

This regime looks close to the H-mode. The experiments with Impurity
Study Experiment (ISX-B) with NBI injection.

1. For co-injection, the electric field was least negative. Particle con-
finement was poor: this is so-called density clamping;

2. balanced injection: more negative Er than above

3. counter-injection: most negative. Improved density confinement.
(See also paper on NBI co and counter, with direct loss).

The impurities are accumulated in the center in the H mode (since Er is
more negative, see McCarthy Drake Hassam Guzdar). DIII-D: 48% of
NBI ions are lost to the limiter.

19 Viscosity

There is a special text on viscosity in plasma, general, theory.
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19.1 Introduction

The sources for the expression of neoclassical viscosity.
Shaing.
Stacey with expansions in sin θ and cos θ components on a magnetic

surface, asymmetries connected with Inverse Stringer effect in my definition.
Kim Diamond.
Yushmanov Su Horton.
Hazeltine and Hinton for neoclassic.
Hirshman Sigmar.
Spontaneous Poloidal Galeev.
Viscosity Stacey.

19.2 The parallel viscosity and the radial electric field

There is a file on VISCOSITY in General, Theory.
The paper by Zhu, Horton Sugama.
The model is the 13M of Grad.
The distribution function is expanded in terms of the flows

u ≡ flow of the fluid

q ≡ flow of heat

f (1) = fM

(
1 +

2v

v2
thi

·
[
ui +

2qi
5pi

(
v2

v2
thi

− 5

2

)])
where

qi →
qi

5pi/2

to have the same dimension as ui.
Using this distribution function the set of closed equations for momenta

is obtained.
The parallel momentum balance equations involve the poloidal flows uθ

and qθ.
0 = −〈B ·∇ ·Πi〉+ 〈B · F1i〉
0 = −〈B ·∇ ·Θi〉+ 〈B · F2i〉

the surface averaged stresses balance the friction forces along the magnetic
field direction.
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Using the distribution function f (1) one obtains the parallel components
of the stress expressed in terms of poloidal and parallel flows(

〈B ·∇ ·Πi〉
〈B ·∇ ·Θi〉

)
=
nimi

τ ii

(
µ̂i1 µ̂i2
µ̂i2 µ̂i3

)(
ûθi
q̂θi

)〈
B2
〉

(
〈B · F1i〉
〈B · F2i〉

)
=
nimi

τ ii

(
l̂ij11 −l̂ij12

−l̂ij21 l̂ij22

)( 〈
u‖jB

〉〈
q‖jB

〉 )
where

µ̂aj and l̂abij

are normalized neoclassical transport coeffi cients.
The

parallel, and

poloidal

components

ûθi , q̂θi

u‖j , q‖j

are connected through the equations

u‖ = − T

ZeBθ

(
1

p

dp

dr
+
Ze

T

dΦ

dr

)
+ ûθ (ψ)B

q‖ = − 1

ZeBθ

dT

dr
+ q̂θ (ψ)B

uθ = ûθBθ

qθ = q̂θBθ

The driving forces are

V1 ≡ −
T

ZeBθ

(
1

p

dp

dr
+
Ze

T

dΦ

dr

)
and

V2 ≡ −
1

ZeBθ

dT

dr

The equations for the parallel flows are∑
j(species)

[(
µ̂i1 µ̂i2
µ̂i2 µ̂i3

)
δij −

(
l̂ij11 −l̂ij12

−l̂ij21 l̂ij22

)](
ûθi
q̂θi

)

=
∑

j(species)

(
l̂ij11 −l̂ij12

−l̂ij21 l̂ij22

)(
V̂1j

V̂2j

)
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where the new notations are

V̂1j ≡
〈V1jB〉
〈B2〉

representing the averaged driving forces.

19.3 General expressions

The following expressions of the parallel plasma viscosity are proposed by
Shaing et al.

〈B ·∇ ·Π〉 = nm
〈
B2
〉(

µ1Uθ +
2

5
µ2

qθ
P

)

〈B ·∇ ·Π〉 = nm
〈
B2
〉(

µ2Uθ +
2

5
µ3

qθ
P

)
where the angular brakets denote the flux surface average. P is the plasma
pressure, n is the plasma density (ion’s) m is the ion mass. The notations
are

Uθ ≡
U ·∇θ
B ·∇θ

and

qθ ≡
q ·∇θ
B ·∇θ

where U is the mass flow and q is the heat flow. By mass flow it seems
that we have to understand the effective displacement of the plasma, not the
diamagnetic flow. We have then

Uθ = (U·êθ)
1/r

Bθ/r

= (U·êθ)
1/r

B/ (qR)
= (U·êθ)

qR

Br
= (U·êθ)

1

Bθ

=
Vθ
Bθ

The equilibrium particle distribution function f0 in the edge region is
not a Maxwellian because of the existence of a direct loss region in velocity
space. Shaing uses however a shifted Maxwellian since in the region of the
velocity space which is outside the direct loss region, the distribution function
is a shifted Maxwellian. The viscosity will be calculated as resulting from
the finite-size orbits of the particles in the shifted Maxwellian.
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The drift-kinetic equation with a mass flow is

(un̂ + vd + V) ·∇f +
·
w
∂f

∂w
= C (f)

The drift velocity is

vd =
F×n̂

Ω
+
µBn̂

Ω

(
j‖
B

)
(5)

+
n̂

Ω
×
[
µ∇B + u2

‖ (n̂ ·∇) n̂ + u‖ (n̂ ·∇) V + (V ·∇)
(
u‖n̂
)]

where j‖ is the parallel current density

Ω =
eB

m

µ =
s2

2B

The force is

F =
e

m
(E + V ×B)− ∂V

∂t
− (V ·∇) V

=
∇p
nm
− R

nm

with R the friction force and the viscous force is neglected.
NOTE
The first term has the meaning of a universal reason for drift of particles

transversal to a magnetic surface: the existence of a force F acting perpen-
dicular to the magnetic field n̂ leads to a drift ∼ F×n̂. But after that we look
for the force F that acts on the fluid and find that the momentum equation
gives a force that comes from the gradient of the pressure. Or, with this ∇p
the drift is actually the diamagnetic velocity.
END

The velocity s (perpendicular) and the energy w = v2/2 are in the frame
of the center of mass velocity.
The energetic contribution in the drift-kinetic equation is:

·
w = F · u− µB (∇ ·V)−

(
u2 − µB

)
(n̂ · n̂ ·∇V)

+F · vd −
(
µB

Ω

)
n̂ ·∇× F

We see that the time variation of the energy is due to
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• the effect of the force × velocity : F · u and F · vd.

• compression of the flow, by a nonzero compressibility∇ ·V 6=0. This is
IN the velocity stress tensor. This is combined with the perpendicular
energy ;

• a sort of viscosity stress: difference in the parallel and perpendicular
energies, (u2 − µB) combined with the parallel drift of the parallel
divergence of the velocity (n̂ · n̂ ·∇V) which is also in the velocity
stress tensor.

• a direct action of the force, by its nonzero rotational, ∇× F 6= 0.

The solution of the drift-kinetic equation can be written

f = fMS + g −
(

2u

v2
th

)
2

5
L

(3/2)
1

(
q‖
p

)
fMS

Note. The part which differs from the shifted maxwellian is in the rotating
system (with the velocity V). This part must be the same as that in other
solutions of the drift-kinetic equation.
Here

L
(3/2)
1 =

5

2
− 2w2

v2
th

is the Legendre polynomial, and

2/5L
(3/2)
1 = 1− 4w2/

(
5v2

th

)
= 1− 2v2/

(
5v2

th

)
For particle velocities which are much higher than the thermal velocity, the
value of the 2/5×L can be negative, which gives a negative correction to the
shifted maxwellian in the first order.

p = nT

is the pressure.
The drfit-kinetic equation will become an equation for g,

(un̂ + vd + V) ·∇g +
·
w
∂g

∂w
− C (g)

= 2
v2

v2
th

(
1

2
− 3

2

u2

v2

)(
n̂ · n̂ ·∇V − 1

3
(∇ ·V)− 2

5
L

(3/2)
1

q ·∇B
pB

)
fMS

where
q =q‖n̂ + q⊥
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and

q⊥ =
5

2

pn̂×∇T
mΩ

(this seems to be essentially the diamagnetic flow of the heat).
The particle rotation velocity V is obtaind from:

• particle parallel velocity,

• electric field-driven (E×B) and the

• diamagnetic velocity divided at the particle density.

V =V‖n̂ +
E×B

B2
+

1

n

1

mΩ
n̂×∇p

(asta trebuie clarificata, desi este asa). Here it is more than the mass
flow. We must compose the total velocity which multiplies ∇f in the
drift-kinetic equation.

un̂ + vd + V =

= un̂− n̂×∇p
nmΩ

+ V

=
(
u+ V‖

)
n̂ +

E×B

B2

In this formula we have made use of an expression for the particle drift
velocity which is the first term in (??), coming from the the “external
force”F which generates a drift acting on the Larmor gyration. Any
force which is perpendicular to the magnetic field generates a drift of
the form F × n̂/Ω . Now, replacing here F by the gradient of the
pressure divided by the density, we get a drift velocity of the particle
which looks identical but with opposite sign to the diamagnetic flow
velocity comming from the total flow V.

Acest amestec de cinetic si fluid in care parti din viteza (care este solutia
ecuatiei de miscare in campurile E si B date) sunt inlocuite prin expresii care
provin de la fluid (consideratii de bilant de impuls) este dificil de urmarit.
It results that the diamagnetic contributions (one from vd one from

the general flowV) cancel each other and there remains only the E×B flow:[(
u+ V‖

)
n̂ +

E×B

B2

]
·∇g − C (g)

= 2
v2

v2
th

(
1

2
− 3

2

u2

v2

)(
1

B
(V ·∇)B − 2

3

1

n
(V ·∇)n− 2

5
L

(3/2)
1

q ·∇B
pB

)
fMS
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NOTE on the cancelling between the diamagnetic contributions.
It is interesting to remark that in the mass flow, it was originally ac-

cepted to be introduced only the effective displacement of plasma, not the
diamagnetic flow. This is why in the work of Hazeltine on the drift-kinetic
equation in the presence of large plasma rotation the velocity which multi-
plies the gradient of the distribution function in the Boltzmann equation is
only composed of

v‖n̂ + V

and the particle drift velocity vD is absent. We conclude:
When the particle drift velocity vD is not included in the total

velocity which convects ∇f , then in the mass velocity V we do not
include the diamagnetic velocity.
When we include explicitely in the form of the plasma rotation

velocity V the diamagnetic flow then it is necessary to form the
total particle velocity which convects ∇f by including the particle
drift vD.
This shows that between the particle drift velocity (gradB, curvature)

and the diamagnetic flow (gradP) it is a connection. How this can appear?
The explanation is given by the form of the equation (5). We see that in
this approach the “particle drift velocity”vD contains much more than the
gradB and curvature motions. It also contains the effect of a force which
is exerted on the plasma, and this force if F, obtained from the momentum
equation divided by the density of particles. This is not exactly what we used
to do starting from the equation of gyromotion of the particle and expanding
in the small Larmor radius and averaging over the gyration. This was the
typical approach and the gradient of the pressure could not appear in
the drift velocity formula.
About diamagnetic cancellation see Carreras, but also Horton 1990.
END OF THE NOTE

NOTE on the form of the velocity which convects ∇f , in the
Boltzmann equation. The following expressions are used in different contexts

v‖n̂ + V

un̂ + vD + V

etc. In fact, we have to be careful to compose correctly the formulas for the
velocities. For the first form

v‖n̂ + V and we should use

V =
K (ψ)

n
B +R

(
−∂φ
∂ψ

)
êϕ
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Here K (ψ)B is a general form of the flux in the magnetic surface, parallel to
the magnetic lines. Divided by the density, n we have a general form of the
PLASMA parallel velocity. This parallel flow arises from a poloidal plasma
flow. In this formula we can see that the diamagnetic contributions have been
cancelled each other.
The term K (ψ)B is the famous poloidal part in the expression of the

rotation. SeeHelander 3999 and many others. The determination ofK (ψ)
from condition of periodicity in the lower order distrbution function equation.

The part R
(
− ∂φ
∂ψ

)
êϕ is due to the perpendicular drifts which take

place in the surface. It is NOT toroidal electric ExB flow.
(Later. Or, maybe it is exactly theE×B velocity, but within the magnetic

surface?)
END OF THE NOTE

NOTE. This way to put the problem, starting with a general
plasma flow, K (ψ), allows to put into evidence the fact that the plasma
flow is the origin of the difference between the actual distribution function
and the Maxwellian.
One can say however that the drift kinetic equation starts from a differ-

ent premise, compared with the standard approach, used when there is no
significant plasma rotation:

• The case without plasma rotation evidences the convection of the ∇f
by the parallel and the drift (gradB and curvature) particle velocities(

v‖n̂ + vD
)
·∇f

• The case with a general plasma flow(
v‖n̂ +

K

n
B

)
·∇f

(see Shaing, Hazeltine Hinton 1976) We remark the absence of
the drift velocity and only the parallel components are retained as
significative. So it is assumed that the driving force for the distribu-
tion function to deviate from the Maxwellian is the plasma flow, not
the drift of the particles which convects the radial variation of the
Maxwellian.

As a result, the expressions for the distribution function in the two cases
are:
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• When the deviation of f from the Maxwellian is due to the drift of
particles vD,

f
(0)
1 = −

(
Iv‖
Ω

)
∂f0

∂ψ
+ g (ψ, λ, w, σ)

(here the superscript (0) to the first order distribution function is re-
lated to series expansion in the small neocalssical second parameter,
related to the time scales: bounce frequency and collision frequency).

• When the drive of the deviation from the Maxwellian is the poloidal
plasma rotation (projected on parallel direction)

f = fM −
2KBv‖
nv2

th

fM +

{
+g (v2, v2

⊥, r) for v‖ > 0 passing particles
−g (v2, v2

⊥, r) for v‖ < 0 passing particles

(and g is zero for the trapped particles).

END of the NOTE.

In this formula the term has been neglected

·
w
∂g

∂w
≈ 0

Also the mirror force term has been neglected, in the Pfirsch-Schluter
plateau regime.
To solve the equation:

• Take a simple Krook collision operator

C (g) = −νkg

• Group the terms on the right hand and perform a development in
Fourier series in the coordinate θ

1

B
(V ·∇)B − 2

3

1

n
(V ·∇)n =

∑
m6=0

(Am cosmθ +Bm sinmθ)

q ·∇B
pB

=
∑
m 6=0

(Cm cosmθ +Dm sinmθ)
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• In the left hand side we must make explicit the velocity(
u+ V‖

)
n̂ +

E×B

B2
(6)

here we only need the poloidal component since the gradient of g is in
the poloidal direction (absence of ripple, etc).

∇g =
1

qR

∂

∂θ
g

= n̂ ·∇θ ∂
∂θ
g

When the velocity (6) is projected on the poloidal direction the first
term will be simply

un̂ ·∇θ
To calculate the rest of the velocity prejected on θ, we write the total
flow velocity V projected

Vp ≡ V·êθ =

(
V‖n̂ +

E×B

B2
+

n̂×∇p
nmΩ

)
· êθ

=

(
V‖n̂ +

E×B

B2

)
· êθ +

n̂×∇p
neB

· êθ

= (projection of the parallel velocity and of the electric E ×B velocity)

+ (diamagnetic velocity)

then (
V‖n̂ +

E×B

B2

)
· êθ = Vp −

n̂×∇p
neB

· êθ

We obtain (
un̂ + V‖n̂ +

E×B

B2

)
· êθ

= un̂ · êθ + Vp −
n̂×∇p
neB

· êθ

Next we introduce the notations

u = vU
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and recompose the left hand side[(
u+ V‖

)
n̂ +

E×B

B2

]
·∇g − C (g)

=

[(
u+ V‖

)
n̂ +

E×B

B2

]
·∇θ ∂

∂θ
g − νkg

=

[
un̂ + V‖n̂ +

E×B

B2

]
· êθ |∇θ|

∂

∂θ
g − νkg

=

(
un̂ ·∇θ +

(
Vp −

n̂×∇p
neB

· êθ
)
|∇θ|

)
∂

∂θ
g − νkg

• represent in Fourier series the function g

See also Stacey

The article Time dependent parallel viscosity Hsu Shaing Gorm-
ley.
The distribution function

f ≡ gyro-averaged dist. function

µ ≡ v2
⊥

2B

w ≡ v2

2

The drift-kinetic eq. for ions in the presence of strong rotation that can
be toroidal and/or poloidal V. The equation is derived afterHazeltine and
Ware Plasma Physics.

∂f

∂t
+
(
v‖b̂ + V

)
·∇f

−
[
V ·∇ (µB) + µB

(
∇ ·V−b̂b̂ : ∇V

)] ∂f
∂µ

+

[
v‖

b̂ ·∇ ·P
mn

− µB (∇ ·V)−
(
v2
‖ − µB

)
b̂b̂ : ∇V

]
∂f

∂w

= C
(
f
)
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The equation for the flux due to the strong rotation V

∇· (nV) = 0

has a general solution

V =
K (ψ)

n
B + ωϕR

2∇ϕ

K (ψ)

n
B ≡ part of the velocity V which is in the surface along B

ωϕR
2∇ϕ = −∂φ (ψ)

∂ψ
R2∇ϕ = −∂φ

∂r

1

RB
R2 1

R
êϕ

=
1

B

(
−∂φ
∂r

)
êϕ ≡ (E ×B) /B2 velocity perp. drift in the surface

The ion stress tensor

P ≡
∫
d3v mv v f

Pij = nTδij +
3

2
π‖

(
b̂ib̂j −

1

3
δij

)
The equation in which we insert this quantities

∂f

∂t
+

(
v‖ +

K

n
B

)
∇‖f

+v‖

[
b̂ ·∇ ·P
mn

−∇‖
v‖KB

n

]
∂f

∂w

= C
(
f
)

Shaing Hsu Gromley assert that K is the driving force that induces a
difference between f and a Maxwellian.
The scales

1 �
K
n
B

vi,th
� ∆

T̃ (θ, t) and ñ (θ, t) are of order ∆

It is defined

νp = − ∂

∂t
ln f

∼
[
s−1
]
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to describe the rotation damping due to magnetic pumping

f = fM + f̃

fM =
n (ψ)

π3/2v3
i,th

exp

[
− mw

T (ψ)

]
The following observations

ωϕ ≡ E ×B velocity in the surface

coming from the velocity perpendicular on B

but directed along êϕ

This velocity can be absorbed in the Maxwellian distribution in an axisym-
metric system.
Only K is the driving of a difference between f and fM .
The equation for this difference f̃ is

−νpf̃ + v‖∇‖
(
f̃ +

2KBv‖
nv2

th

fM

)
=

b̂ ·∇ ·P
p

v‖fM

+C
(
f̃
)

The solution.
To the zeroth order

f̃0 = −
2KBv‖
nv2

th

fM

+σg (w, µ, ψ)

where σ ≡ sign
(
v‖
)

To the first order in ∆, O (∆)

v‖∇‖f̃1 =
b̂ ·∇ ·P

p
v‖fM

+νpf̃0

(
this is

∂f

∂t
due to damping

)
+C

(
f̃0

)
Here we will replace the expression of the distribution function at zeroth
order, f̃0 which contains the function g.
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We will use the periodicity in θ to obtain a constraint from where we get
g.

To calculate the function g we must take the average of the above equation
over the bounce of ions. This will eliminate the sign of the parallel velocity.
First we devide by v‖ and multiply with B:

B

v‖
× [Equation]

and then integrate over the magnetic surface. This is the average over the
bounce.

〈B ·∇ ·P〉
p

fM

+νp

(
−2K 〈B2〉

nv2
th

fM +

〈
B∣∣v‖∣∣
〉
g

)

+

〈
B∣∣v‖∣∣C (g)

〉
= 0

g (w, µ, λ) ≡ 0 in the trapping region

A detailed treatment of the collision operator.

C [Pl (ξ)φ (v)] = Pl (ξ)C
l [φ (v)]

This can be found also in Taguchi.
The collisional operator is linearized and expanded as

C (f) = 2ν (v)h |ξ| ∂
∂λ
λ |ξ| ∂

∂λ
f

+

∞∑
l=0

Pl (ξ)

[
C l
(
f̂l

)
+
l (l + 1)

2
ν (v) f̂l

]
where

λ ≡ µB

w
=
v2
⊥
v2

ξ =
v‖
v
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h ≡ B0

B
= 1 +

r

R
cos θ

Pl (ξ) ≡ Legendre polynomials

f̂l ≡
2l + 1

2

∫ 1

−1

dξPl (ξ)

x ≡ v

vth

ν (v) ≡ 3
√

2π

4
νii
φ (x)

x3

φ (x) ≡
(

1− 1

2x2

)
erf (x)− 1√

π

exp (−x2)

x

(see Novakovskii Liu Sagdeev Rosenbluth where the collision oper-
ator is in the equation for the distribution function with FAST time depen-
dence ∂

∂t
∼ ωbounce, for polarization, GAM, magnetic pumping).

In the paper Shaing Callen PF26 (1983) 3315 the viscosity is calcu-
lated

〈B ·∇ · πa〉 =
〈(
p⊥a − p‖a

)
n̂ ·∇B

〉
=

〈
n̂ ·∇B

∫
d3vma

(
v2
⊥
2
− v2

‖

)
fb

〉
(See also Zhu Horton Sugama).
To calculate this integral one introduces two space-coordinate variables

V ≡ volume inside a magnetic flux surface

β ≡ dψ

dV
θ − dχ

dV
ζ

where

dψ

dV
≡ density of toroidal flux

= B ·∇ζ
dχ

dV
≡ density of poloidal flux

= B ·∇θ

with (θ, ζ) angle variables, roughly poloidal and toroidal angles. The mag-
netic field is

B = ∇V ×∇β
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when β is taken as the variable that measures the distance along the magnetic
field line.
The differential volume in the velocity space is expressed in terms of the

new variables: (E, µ) (note that without ζ on which we have integrated out
for gyroaveraging).

d3v =
dE dµ

ε0m2
a

B∣∣v‖∣∣
or

d3v =
1

ε0m2
a

B∣∣v‖∣∣dEdµ
Then the integral becomes

〈B ·∇ · πa〉 =

=

∮
dβdζ

∫
1

ε0m2
a

dE dµ ma

[
1∣∣v‖∣∣ ∂B∂ζ

(
v2
⊥
2
− v2

‖

)]
fb

The factor in the square brackets is a total derivative

1∣∣v‖∣∣ ∂B∂ζ
(
v2
⊥
2
− v2

‖

)
= − ∂

∂ζ

(∣∣v‖∣∣B)
Then, since the distribution function does not depend on ζ in the surface,
the integration can be carried out and gives

〈B ·∇ · πa〉 = 0

In the same paper

p‖ − p⊥ = 3nτ [(n̂ ·∇) (n̂ · u)− ((n̂ ·∇) n̂) · u]

or
p‖ − p⊥ = 3nτ

[
∇‖u‖ −

(
∇‖n̂

)
· u
]

and if we take

(n̂ ·∇) n̂ ≈ − 1

R
êR

(directed toward the major axis))

then

p‖ − p⊥ = 3nτ

[
∇‖u‖ +

1

R
uaxis

]
227



where τ is the ion-ion collision time.

p‖ − p⊥ = 3nτ

[
∇‖u‖ −

ê

R
· u
]

where ê is the versor of the curvature direction, which is directed toward the
axis of symmetry of the torus.

Note The inertia of poloidal rotation is calculated in terms of an effective
mass byGaleev Sagdeev 1996. And inHassam Drake Kleva on Stringer,
in impurity accumulation, Notes.

The viscosity leading to damping of the poloidal rotation in Stacey Neo-
classical Poloidal Rotation is

B ·∇ · πj = 3
〈
(n̂·∇B)2〉(qRnjmjvthj

ν∗j
(1 + ν∗j) (1 + ε3/2ν∗j)

)
v ·Bθ

B2
θ

where 〈
(n̂ ·∇B)2〉 =

1

2

(
ε

qR

)2

B2

where
ε ≡ r

R

The result is geometric〈(
∇‖B

)2
〉

=
1

2

(
ε

qR

)2

B2

=
1

2

(
1

R

Bθ

BT

)2

B2

≈ 1

2

(
Bθ

R

)2

(see also geometry magnetic field.tex).

The paper Poloidal Rotation Stacey 1992 presents the density asym-
metries on magnetic surfaces together with neoclassical viscosity.

19.4 Variation of plasma parameters on a magnetic
surface

There is a file in General, Theory.
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This subject is closely related to the viscosity and plasma rotation, toroidal
and poloidal.
It has a neoclassic component, as Inverse Stringer Effect in my definition.
Paper Role Flow Shear.
Stacey makes detailed calculations of such asymmetries on the surface,

based on an expansion in sin θ and cos θ.

19.5 About plasma rotation velocity and viscosity (Shaing,
Crume, Houlberg)

Let us consider the plasma velocity

U = U‖n̂ + U⊥

The perpendicular plasma velocity has two components:

• the radial electric field x B, i.e. E×B flow;

• the diamagnetic flow.

Then

U⊥ = Er
êr × n̂

B
+

1

nmΩ
n̂×∇p

Multiplying the equation of definition of U by versors in the poloidal and in
the toroidal direction, we get

Up = Ut

(
Bp

B

)
− Er
B

+
1

nmΩ

dPi
dr

From this formula it results that the poloidal rotation velocity becomes
more positive when the radial electric field becomes more positive.
The contribution of Ut to the radial electric field Er is a fraction of Bp/B

from the contribution of Bp when the toroidal Ut and poloidal Up velocities
are equal.
This shows that it is the poloidal flow which can strongly influ-

ence the value of the radial electric field.
The determination of the poloidal plasma velocity is done by

solving the momentum equation.
In this momentum equation the poloidal momentum is damped by the

poloidal (parallel) viscosity
〈Bp ·∇ ·Π〉
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In the neoclassical theory this is all we need, since there is no source or sink
of momentum. In practial situation of the tokamak there are orbit losses
which provide additional sources in the equation close to the edge.
In order to calculate 〈Bp ·∇ ·Π〉 we need to solve the drift-kinetic equa-

tion.

〈Bp ·∇ ·Π〉 =

√
π

4

ε2

r
nmvthiB (IpUp + ITUp0)

where

Up0 = −ρivthi
2

1

Ti

dTi
dr

and the integrals are

Ip
IT

}
=

1

π

∫ ν
1/2
∗i

0

dx

{
1(

5
2
− x
) }x2 exp (−x)

×
∫ 1

−1

d
(v‖
v

)[
1− 3

(v‖
v

)2
]2 ν∗iε

3/2
(

νT
ν
√
x

)
(v‖
v

+ Up,m/
√
x
)2

+
[
ν∗iε3/2

(
νT
ν
√
x

)]2

The other notations

Up,m = Up
B

vthiBp

+ λp/2

λp = −ρpi
(

1

P

dP

dr

)

ν∗i = ν
Rq

vthiε3/2

=
ν

(vth,i/Rq)
ε−3/2

v‖
v

= cos(pitch angle)

νT = the collisional rate of anisotropy relaxation

The term λp/2 will cancel the diamagnetic flow, such that only the radial
electric field × magnetic field and the parallel flow will remain.
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20 Rotation decay through ion bulk viscosity

20.1 Introduction

In the text Soliton NSE Self Modulation I find a reference :
The decay rate of the poloidal rotation by this mechanism is [?]:

γMP '
3

4

(
1 +

1

2q2

)−1(
l

qR

)2

νii (7)

where l is the mean-free path.
And this is later calculated giving an estimate of

γMP = 12
[
s−1
]

(Later Not correct, much higher 104).

There is another reference, mentioned by Taguchi, it is: Hirschman
1978.

The paper Neutral H Mode Peeters gives the following decay coeffi -
cient

γMP =
〈Bθ〉 〈Bθ ·∇ · πNC〉
〈B2

θ〉mini 〈Vθ〉

20.2 The general schema of the problem (Stix 1973)

One starts with an initial rotation of the plasma or, equivalently, with a
radial electric field. No need to specify the origin of these.

initial Er and Plasma Rotation

This rotation is executed in a modulated magnetic field, which generates
dissipation through two mechanisms:

• collisions

• transit time magnetic pumping

These mechanisms of dissipation induce a radial current.
NOTES
The (“average”) plasma rotation induces a radial current. This is gen-

erated by the standard mechanism of the difference between the motions of
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ions and electrons sustained by the continuous alimentation of the density
in a point due to the average motion of particles. This is necessary since
otherwise the number of pairs ion/electron arriving at a certain point from
one direction would be equal to the number of pairs of ion/electron arriving
from the other direction. Now, at the current point, the pair comming from
one direction separates (: in opposite direction on the local radial direction,
due to the guiding centre neoclassical drift) with different velocities. The
pair comming from the other direction will also separate in opposite radial
direction, and in opposition relative to the first pair NO. If the distribution
function would be symmetric, the number of ions passing through a sur-
face at a particular radius in one sense on the radius would be equal to the
number passing in the opposite sense. In order to have a current we need
these numbers to be unequal, i.e. we need a distribution function which
is not symmetric in v‖. This is achived if the plasma particles move along
the magnetic line with in one direction, so that an average parallel velocity
exists. It is thus related to the existence of an average parallel motion of
both particles. But also the poloidal motion (due to the initial rotation =
initial electric field) and the diamagnetic rotation can sustain the mechanism
of radial current generation. Note. The continuous flow of particles arriving
at a point has the same effect as

• the ionization of the neutral beam-injected at that point

• the local heating of the ion by ICRF heating (put energy in the per-
pendicular ion motion means to increase its radial deviation from the
magnetic surface due to the drift);

This radial current interacts with the magnetic field and produces a force
which acts on the plasma. The plasma slows down and the rotation decays.
END OF THE NOTES

It is studied : The momentum decay of a low-β plasma moving
through a spatially periodic magnetic field. Due to the motion the
plasma sees in its rest frame a time-varying magnetic field and is therefore
subject to the dissipative process of magnetic pumping.
The dissipation arises from the bulk ion viscosity and has components

• collisional

• non-collisional
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which means that there is also dissipation of the nature of Landau damp-
ing (not transforming the motion into heat but in incoherent motions).
The viscous drag slows down the plasma motion across the field irreg-

ularities and the electric field originally responsible for the motion
is wiped out by the sum of the viscosity-induced and polarization-
induced cross-B currents.
A list of possible sources of radial electric field :

1. plasma heating expands the orbits of ions more than those of the elec-
trons; the width of an orbit is proportional with the drift velocity, which
is ∼ v2

⊥;

2. turbulent transport may be non-ambipolar

3. imperfect magnetic surfaces may allow electrons to escape

4. α particles released from nuclear reactions near the edge of a reactor
plasma can be carried out of the plasma by their large Larmor radius
or by their banana orbits

5. the orbits of the fast ions deposited in a plasma by NBI deviate from
the magnetic surface (where they are produced by ionization) by dis-
placements as large as the banana width.

The picture is as following:

• there is an initial radial electric field Er

• due to this electric field there is a plasma flow ; this flow is in the
magnetic surface;

• due to this plasma flow it arises a radial current ; this current will be
calculated as space averaged ; this space-averaged radial current
is second order in the amplitude of the magnetic field per-
turbation.(Nota: it is question of the variation of the magnetic field
intensity along a magnetic line, wiewed as a perturbation). The
amplitude of this variation is

λ ∼
∆‖B

B
∼ r

R

• the total current is composed of viscous and polarization parts.
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NOTA. The most important part of the work is to calculate the radial
current density, jr. Its value arises from the difference of the radial drifts of
the electrons and the ions. The generation of this current and the interaction
of this current with the magnetic field (leading to a force which stops the
plasma rotation) is characterized with the name: viscosity. Using this name
is probably justified because there is transfer of momentum in transversal and
parallel directions, convected by the motion of the plasma.

The plasma undergoing magnetic pumping dissipates via ion viscosity
the kinetic energy of the rotation and heat will be produced. This is way
the time for decay of the initial rotation is of the order of the ion-ion col-
lision time. But, in the less collisional regimes (so-called long mean-free
path regimes) the trapped particles operates the decay of the initial motion,
through a mechanism similar to Landau damping.
There is a Lagrangian for the particles in inhomogeneous magnetic field:

L =
1

2

∑
i

miv
2
i +

∑
i

qivi ·Aext (ri, t)−
∑
i

qiφext (ri, t)

+Lint

where Lint is the part of the Lagrangian due to the interaction between the
particles

Lint =
1

2

∑
i,j i 6=j

qiqj
r

[
−1 +

1

2

(
vi · vj +

(vi · r) (vj · r)

r2

)]
and

r ≡ |ri − rj|
From this coordinates ri one can go to generalized coordinates appropriate

for the geometry under investigation(
ξi,
·
ξi

)
and write the Euler-Lagrange equations

d

dt

∂L

∂
·
ξi

− ∂L

∂ξi
= 0

To take into account the geometry, one introduces the Lamé coeffi cients
(from the elementery differential form of distance ds2): hξ as in

vξ = hξ
.

ξ
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The interaction term makes no contribution to the second term in the Euler-
Lagrange equation: ∑

k

∂L

∂ξk
= 0

and it results

d

dt

∑
k

[
mkh

2
ξ

·
ξk + qkhξAξ (rk, t)

]
=

=
∑
k

∂

∂ξk
qkvk ·Aext −

∑
k

∂

∂ξk
qkφext

where Aξ is the magnetic potential due to the external sources and to all
the particles except the k-th particle.
The momentum conservation law is connected with the case where

at leats one of the coordinates of the system is ignorable. We can consider
the external potential independent of the coordinate ξ, i.e.:

hξAextξ , hηAextη , hζAextζ are independent of ξ

this gives
d

dt

∑
k

[
mkh

2
ξ

·
ξk + qkhξAextξ (rk, t)

]
= 0

NOTE. The last term of this formula has not an obvious physical interpre-
tation: it is the product of the particle’s charges with the magnetic potential.
From this one gets

d

dt

∑
k

mkh
2
ξ

·
ξk = − ∂

∂t

∫
ρhξAξ (r, t) d3r

=

∫
(∇ · j)hξAξ (r, t) d3r +

∫
ρhξEinductionξd

3r

NOTE. It appears that only a nonvanishing divergence of the radial current
can sustain a time variation of the poloidal plasma momentum. This calls for
a dynamic phenomenon, where the charges are accumulating at each point, as
in a transient process of polarization. However, at the end of the calculation,
one gets a simple j×B force acting of plasma, and the non-vanishing
divergence of the current density is no more visible.
Actually, what is more important in this formula is the non-vanishing of

the time derivative of the charge density. This is correlated with one
of the following processes:
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• creation of charges from: polarization (very small relative displacement
of positive and negative charges); or from the difference in the motion
of the particles just created in some spatial point;

• regular displacement = flow of charges (of only one sign is suffi cient)
but variation of the flow due to geometry. If plasma rotates there is a
periodic concentration and dilation of charges in the magnetic surface.

NOTE. It is also possible that the divergence of the current density
arises simply from the toroidal geometry. But in a slab, there is no
other possibility than accepting a transient process where charges are created
at every point in the plasma, or they move one relative to the other, as in
polarization.
If the coordinate of symmetry, ξ is the toroidal angle, ϕ then

mkh
2
k

·
ξk → mR2 ·ϕ = mRvϕ

which is the particle’s kinetic momentum in the toroidal direction, a vector
which is along the main axis of the torus, oriented upward. The conservation
equation is

d

dt

∑(
mR2 ·ϕ

)
= torque on the plasma, from a force in the ϕ direction

The last term contains the charge density which is allways zero on the
scales of interest.

d

dt

∑
k

mkh
2
ξ

·
ξk = −

∫
j ·∇ (hξAξ) d

3r (8)

after an integration by parts. This is a relation between the NON-
AMBIPOLAR flow of particles j and the plasma acceleration in
the direction of the ignorable coordinate.
There is a relation between the time-derivative of the radial electric field

and the radial current (across the magnetic surfaces).

1

µ0

(∇×B)|r = jr + ε0
∂Er
∂t

If this relation is averaged over the magnetic surface,

〈jr〉 =
total current Jr

surface
=

Jr
(2πR) (2πr)
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0 =
Jr

(2πR) (2πr)
+ ε0

∂ 〈Er〉
∂t

Taking
hφ = R + r cos θ

Aφ = − R

R + r cos θ

∫ r

b (r) dr

Bθ =
R

R + r cos θ
b (r)

d3r = rdr dθ (R + r cos θ) dφ

The total current crossing a magnetic surface is

Jr (r) =

∫∫
jr (r, θ, φ) rdθ (R + r cos θ) dφ

returning to the equation (8) we obtain

d

dt

∑
k

mk (R + r cos θ)2
·
φ = R

∫
Jr (r) b (r) dr

This relation expresses the connection between the change of the toroidal
angular kinetic momentum of plasma to the total torque around the major
axis due to the force j×Bθ. (Este vorba de momentul cinetic, mvr sau
mωr2).
This a force relation: j×B is a force: the plasma is accelerated, there

is no stationarity at this moment.

20.3 The connection between the toroidal and poloidal
total momenta

The definitions
Ltor =

∑
k

mk (R + r cos θ)2
·
φ

Lpol =
∑
k

mkr
2
k

·
θ

We note

sinα =
b

B
Taking the particle drift as the electric drift

E + v ×B = 0

237



we obtain the relation which connects the time variations of the angular
kinetic momenta is(

1 + sinα
bB

4πn

)
d

dt
Ltor =

R

r

bB

4πn
cosα

d

dt
Lpol

which shows that: the change in the poloidal angular kinetic momen-
tum Ppol has a very weak influence on the toroidal angular kinetic
momentum.
(What means that? This suggests that a change in the poloidal rotation

cannot be transfered to the toroidal one? Then we will have a diffi culty to
explain the important toroidal rotation when the vorticity is pinching).

20.4 The drift-kinetic equation

The general form of the drift-Boltzmann equation

∂f

∂t
+ vD ·∇f + q

∂φ

∂t

∂f

∂ε
= C (f)

where the variables of the distribution function imposed by the operations of
gyro-phase averaging of the Boltzmann equation are

f = f (ε, µ, r, t)

with

ε =
mv2

2
+ qφ

µ =
mv2
⊥

2B

NOTE
The drift velocity vD actually contains the parallel velocity v‖n̂.
END OF NOTE

NOTE. It is necessary to observe that the neoclassical study which is
developed by Stix relays on: convection of the distribution function by the
drift of the particles and energetic effect associatied to the variation of
the electric potential. So, the fact that the particle moves in a spatially
nonuniform magnetic field will have as consequence the appearence of an
energy change due to the variation of the electric potential in which the
particle evolves. The electric potential is changing in time. By the change
of variables, the potential variation in time will formally disappear from the
equation for the distribution function.
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It is interesting to note that this term does not appear in the treatments
based on the drift-kinetic equation with a strong plasma rotation
(Hinton and Chang, Hazeltine and Ware, Shaing). When we keep the time
variation of φ, the only way to interact with this time variation of φ is the
motion of the particle, Wkx + V kz in Stix. When the velocity is already
present, there is no need to mention that.
END of NOTE.
In the equation, the partial derivatives are performed holding five of the

six variables (ε, µ, r, t) constant. The velocities are

vD = n̂v‖ +
1

Ω
n̂×

[
1

m
µ∇B + v2

‖ (n̂ ·∇) n̂ +
q

m
∇φ
]

where

v‖ =

[
2

m
(ε− µB − qφ)

]1/2

Changing to the system of coordinates

(ε, µ, r, t)→
(
v2
⊥
2
, v‖, r, t

)
the operators becomes

∂

∂t

∣∣∣∣
ε,µ,r

=
∂

∂t

∣∣∣∣
v⊥,v‖,r

− q

m

∂φ

∂t

∂

∂
(
v2
‖/2
)
∣∣∣∣∣∣
v⊥,v‖,r

and

∇|ε,µ,t = ∇|v⊥,v‖,t +

µ∇B
m

∂

∂ (v2
⊥/2)

∣∣∣∣
v⊥,v‖,t

−
(
µ∇B + q∇φ

m

)
∂

∂
(
v2
‖/2
)
∣∣∣∣∣∣
v⊥,v‖,t

and

q
∂φ

∂t

∂

∂ε

∣∣∣∣
µ,r,t

=
q

m

∂φ

∂t

∂

∂
(
v2
‖/2
)
∣∣∣∣∣∣
v⊥,v‖,t

NOTE
This calculation is very instructive. It shows that we have to consider the

space operators acting on the distribution function as being connected with
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the dependence of the distribution function with respect to the energetic
variables, the parallel energy and the perpendicular energy. It is normal,
since the variation of the magnetic field induces a variation of energy for
every particle moving in this geometry. The way to take this into account is
to make a change of variables in the space-differential operator.
END OF NOTE

(NOTA: this change of variable is different of that which is performed
just before the gyro-phase averaging. There the variables naturally contains
also the gyro-phase ζ. Possibly after averaging, the operators may be iden-
tical, but this is not of interest to the neoclassical calculations of gyro-phase
averaging).
NOTE By the change of variables, the term with the energy change by

the time variation of the electric potential disappears. It is a cancelling of
the two terms that contain the time derivative of the electric potential.
The Drift-Boltzmann equation is{

∂

∂t
+

+

[
n̂v‖ +

1

Ω
n̂×

(
1

m
µ∇B + v2

‖ (n̂ ·∇) n̂ +
q

m
∇φ
)]
×

×

∇+
µ∇B
m

∂

∂ (v2
⊥/2)

−
(
µ∇B + q∇φ

m

)
∂

∂
(
v2
‖/2
)
 f

= −ν (f − f0)

NOTA It is clear that this treatment is developed before or independent
of the neoclassical standard methods of expansion in the two parameters
typical for neoclassical orbits: banana width/plasma radius and bounce
frequency/collision frequency.

20.4.1 The magnetic field

It is chosen a magnetic field which is in a slab geometry but which essentially
keeps the periodic spatial variation of the tokamak field.

B = B0 + B1

B1 (x, z) = λB0 Re

[
êz − êx

kz
kx

]
exp (ikxx+ kzz)
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where λ measures the fractional modulation of the magnetci field along the
line B. It is actually of the order

λ ∼ r

R

20.4.2 Solution of the drift-kinetic equation

The distribution function and the electric potential are expanded in the small
parameter λ and are Fourrier transformed

f = f0 + Re f1 exp (ikxx+ ikzz − iωt) + · · ·

φ = φ0 + Reφ1 exp (ikxx+ ikzz − iωt) + · · ·
In the first order we have(
−ω + kxW + kzv‖ − iν

)
f1 =

qφ1

m

(
kz

∂

∂v‖
− kx

Ω

∂

∂y

)
f0

−λδ (ω)

m

µkzB0v‖
∂

∂ (v2
⊥/2)

− µkzB0v‖
∂

∂
(
v2
‖/2
)

+µkxB0W
∂

∂ (v2
⊥/2)

−
mv2
‖k

2
z

kx
W

∂

∂
(
v2
‖/2
) +

+
µB0

Ω
kx

∂

∂y
−
mv2
‖

Ω

k2
z

kx

∂

∂y

)
f0

where the poloidal velocity has been introduced

W =
1

B0

∂φ0

∂y

NOTE. Here kz plays the role of the inverse connection length

kz ∼
1

qR

and appears in the position of the radius of curvature, 1/R arising from the
v2
‖ (n̂ ·∇) n̂. We also remark that the wavevector kx describes the variation
in the direction perpendicular to the magnetic field line.
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20.4.3 The radial electric current

It is obtained from the combination of the

• radial drift of the particles and

• the distribution function in the first order of approximation in powers
of λ, the variation of the magnetic field modulus along the line.

êy · vD = i
kxλ

q

[
µ−

k2
zmv

2
‖

k2
xB0

]

≈ i
kxλ

q

v2
⊥

2Ω

since
k2
z � k2

x

Here
kxλ ∼

1

r

r

R
∼ 1

R
the curvature

and the drift is

∼ 1

Ω

v2
⊥/2 + v2

‖

R
The projection of the drift velocity on the radial versor is a periodic quan-
tity. Since vD is a vector oriented approximately in vertical direction, the
projection of vD on êr is

vD · êr ∼ sin θ

It is zero at θ = 0 (on the equatorial plane) and maximum at the highest top
point on the surface, at θ = π/2 ; it decreases afterward and changes sign on
the side of the surface which is below the equatorial plane. So it is a sin θ.
On the other hand, we see that the first order distribution function is

also periodic in space on the x and z directions, due to the presence of the
Fourier exponential.
Since the radial current is the product of the radially-projected drift ve-

locity with the first order distribution function the result is essentially
periodic with the same periodicity, kx on the x coordinate (perpendic-
ular on the magnetic field line) and kz on the direction of the magnetic line.
Then the spacial average “on the magnetic surface”(i.e. on (x, z)) is zero
and there would be no radial average electric field.
Actually the average of the radial electric field is not zero and this is

due to the shift in phase between the

242



• radially projected drift velocity vD · êr ∼ sin θ; and the

• first order distribution function f1 ∼ exp (ikxx+ ikzz).

SHIFT in phase which is due to collisions:

ν > 0

The average on the magnetic surface is equivalent to the average
on (x, z):

〈AB〉 =
1

4

(
Ã∗B̃ + ÃB̃∗

)
where Ã and B̃ are the complex coeffi cients Fourier transform of A and B.
Then

˜(vD · êr)
∗

= −ikxλ
∗

q

v2
⊥

2Ω

and
(̃f1) = f1 = solution of the drift-kinetic equation

Then

〈jr〉 =

∫
2πv⊥dv⊥dv‖ (qm)

(
1

4

∑
ions, elect.

(
−ikxλ

∗

q

v2
⊥

2Ω

)
f1 + complex conjugate

)

=
1

4
(2JI + JII) + complex conjugate

with the definitions

JI = i |λ|2 kx
B0

∑
i,e

∫
dv‖

(
NIT⊥

−kzv‖ − kxW + iν

)
and

NI ≡
(
kxW + kzv‖

)
f0 +

+kz
T⊥
m

∂f0

∂v‖
− kx
B0

∂f0

∂y

where
f0 = f0

(
v‖, y

)
which is what remains from the Maxwellian after the integration over the
perpendicular velocity, v⊥.
We can recognize the last term: the diamagnetic term.
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We can see that if ν = 0 the quantity NI is pure real and JI is
pure complex this would simply mean that

〈jr〉 ∼
1

2
(JI + complex conjugate)

=
1

2
(JI − JI)

= 0

and there is no averaged radial current.
This is not so due to the collisions

ν 6= 0

20.4.4 Conclusion at this perspective on the poloidal velocity damp-
ing

From this treatment we can get the same conclusion, but using eventually
other words.
The drift-kinetic equation gives the distribution function reflecting the

motion of particles in the geometry of the tokamak. This motion enters
the drift-kinetic equation by the expression of the neoclassical particle drift
velocity vD.
The neoclassical calculus stops at the time derivative of f , the convection(

v‖n̂ + vD
)
applied on the gradient of f and the Collisions. The electric

potential φ terms cancel.
The drift of the particle is oscillatory on the magnetic surface and has

zero average on the magnetic surface, for passing particles in particular.
At Stix, has zero average on (x, z).
The distribution function in the first order has zero average since it

passes over the maxima and minima of the spatially periodic distribution
function.
There is a decalage between the drift of the particle and the distrib-

utiuon function which in principle can provide non-zero average of the
product (〈jy〉 6= 0) . But, essential is the presence of the COLLISIONS ν.
They produce and sustain the current across the magnetic surfaces which,
when combined with the magnetic field gives the decay of the poloidal
rotation.

With the solution of the drift-kinetic equation (in certain approximations
given by the usual expansion in neoclassical small parameters) it is calculated
the radial particle fluxes, for electrons and ions. Due to the difference in
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the drift velocities of the alectrons and ions, there is a intrinsic differ-
ence between the ion and electron radial fluxes leading to a radial
current.
This radial current interacts with the main magnetic field and produces

a force which is opposed to the initial poloidal plasma flow.

20.5 Decay by viscosity of the rotation generated by
an initial electric field

In the banana regime the continuity equation has as solution the general
form of the plasma velocity

V =
K (ψ)

n
B + ωϕR

2∇ϕ

to the lowest order in the Larmor radius.

ωϕ = −∂φ (ψ)

∂ψ

corresponds to the E×B rotation and has to be a flux function. Then

V =
K (ψ)

n
B +R

(
−∂φ (ψ)

∂ψ

)
êϕ (9)

or

V =
K (ψ)

n
B +

(
−∂φ (ψ)

∂r

1

B

)
êϕ

K (ψ) corresponds to the parallel flow, in the surface. It contains the
poloidal flow.
This is a general solution of the continuity equation

∇· (nV) = 0

after neglecting the radial flow. See Hazeltine Hinton.
K (ψ) is the driving force of the deviation of the averaged distribution

function.
The drift-kinetic equation becomes

∂f

∂t
+

(
v‖ +

K

n
B

)
∇‖f + v‖

(
n̂ ·∇ ·P
nmi

−∇‖
v‖KB

n

)
∂f

∂w
= C

(
f
)

NOTE on the origin of this equation. As said before, this equation
comes from the drift-kinetic equation in a plasma with strong rotation. The
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general form of the mass velocity for this rotation is given by the general
formula of the solution of the of the continuity equation, Eq.([?]). The drift-
kinetic equation has an energetic term, arising from the combination of the
effects of the mass flow and the particle velocity. There are two compo-
nents which are retained, when it is calculated the time-dependent parallel
viscosity and relaxation rate of poloidal rotation:

v‖
n̂ ·∇ ·P
nm

time rate of energy exchange
against the parallel Pressure gradient

This term is exactly that of the full equation. And

−v‖∇‖
v‖KB

n

This term has the following source

−
(
v2
‖ − µB

)
n̂ · n̂ ·∇V

∂f

∂w

with w = v2/2. The first part

−v2
‖n̂αn̂β∇αVβ = −v‖

(
v‖∇‖

KB

n

)
and the second term seems to be neglected. This is rather bizarre: the force
here arises from the parallel divergence of the flow velocity of the rotation.
More precisely, in the form

−v‖∇‖
v‖KB

n

the energy change is connected with the work done against the force which
appears from the parallel divergence of the flux of parallel momentum. Or,
the parallel flux of parallel momentum has a space variation in the parallel
direction. This can be in principle related to the magnetic field variation but
all the diffi culty of calculation is transfered to the mass flow KB/n.
PROBLEMS. It is necessary to evaluate the

• divergence of the flow velocity (the compressibility of the poloidal flow)

∇ ·V

which is multiplied by µB;
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• the term
µB n̂ · n̂ ·∇V

Here, the parallel variation of the distribution function f is convected by
the parallel velocity, composed of:

• particle parallel velocity v‖;

• fluid parallel velocity, (which is also a velocity for each particle) K
n
B;

this is found in other treatments as V;

There is a parallel variation of the distribution function along the mag-
netic lines, i.e. in the magnetic surface. There is a variation of the density
and the temperature in the magnetic surface: ñ (θ, t) and T̃ (θ, t). It can
be seen that the variation in the surface of the density and temperature are
conected with MAGNETIC PUMPING.
The Energetic term in the drift-kinetic equation.

• The first term: the gradient of the ion stress tensor is projected in the
parallel direction and then is convected by the parallel velocity. The
main variation of the ion pressure is radial, so has zero projection along
the field line. But, there is a variation of the pressure “in the magnetic
surface” and thus there is a parallel gradient of the pressure, i.e. a
force. The particle works against this force when it moves along the
line.

• The second term −∇‖
v‖KB

n
is connected with the parallel variation

of the parallel flux of parallel momentum: It is question of the
parallel momentum from the flow, KB

n
, convected by the parallel veloc-

ity v‖ ; this is a parallel flux of parallel momentum. Its variation in the
parallel direction is connected with the geometry (toroidal: the lines of
flow agglomerate when we go to the interior of the torus) and to the
variation of the magnitude of the magnetic field. The flux has non-zero
divergence. This divergence is a force in the parallel direction. Then,
the particle works against this force, since it moves with velocity v‖. It
seems that actually it is question of the magnetic pumping force, which
is an energy sink for the direct motion.

In the lowest approximation, the distribution function is Maxwellian

fM =
n (ψ)

π3/2v3
th (ψ)

exp

(
− mw

T (ψ)

)
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and the gyro-averaged distribution function differs from the Maxwellian by

f = fM + f̃

and in the function f̃ tehre is a part which is the first order of the neoclassical
distribution function:

f̃ = −
2KBv‖
nv2

th

fM + δf̃

This part can be attributed to the effect of the MAGNETIC PUMPING
associated to the poloidal motion of the plasma with the poloidal velocity
which results from the parallel velocity K(ψ)

n
B. This “modulation” of the

distribution function f−fM is related to the neoclassical effects: (1) geometry
of the torus, and (2) variation of the magnetic field along the line, i.e. the
magnetic pumping.
(Observatie personala: 2-ul este interesant, apare misterios si la poloidal

spin-up de Drake si Hassam).
Equation for this part δf̃ of the distribution function:

v‖∇‖
(
f̃ +

2KBv‖
nv2

th

fM

)
=

n̂ ·∇ ·P
p

v‖fM +

+
(
νpf̃
)

+C
(
f̃
)

Here, since the objective were to calculate the rotation damping by ion
viscosity, the explicit time derivative has been replaced with the rate of damp-
ing.
This equation

v‖∇‖ δf̃ =
n̂ ·∇ ·P

p
v‖fM + (10)

νpf̃ + C
(
f̃
)

shows that the parallel variation of this “supplement” of the distribution
function is convected due to a force which arises from the parallel variation
of the pressure. (It is already here the origin of the spontaneous poloidal
spin-up: the differneces in the density and temperature on the surface drive
the distribution function, which further can enhance the differences. How-
ever, here it is said that only the poloidal rotation is the cause of the δf̃ on
the surface. And, in the analysis of Hassam and Drake, it is said that the
variation on the surface of the fluxes from diffusion or of the sources can
drive the spin-up, according to Stringer).
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The zeroth order of the function δf̃ is denoted g (w, µ, ψ)

δf̃0 = f̃0 +
2KBv‖
nv2

th

fM = σg

where σ is the sign of the parallel velocity. The next order:

δf̃1 =

(
f̃ +

2KBv‖
nv2

th

fM

)∣∣∣∣
1

= σg1

is obtained after sunstituting δf̃1 in the left hand side of eq.(10) and f̃0 in
the last two terms in the right hand side:

v‖∇‖ f̃1 =
n̂ ·∇ ·P

p
v‖fM + (11)

νpf̃0 + C
(
f̃0

)
20.6 The transit time magnetic pumping induced in

the MHD relaxation (Hasegawa, Yoshida)

The paper of Hasegawa Yoshida.
The helicity dissipation is

E ·Bd3x

where
E =ηJ− v ×B

The viscosity does not change the helicity. Viscosity is just a transfer of
momentum.
Only the resistive dissipation.
But it dissipates the energy of the fluctuations to heat ions.
The force experienced by a fluid that makes a motion along the direction

of magnetic field lines (parallel) is

F‖ = −µ∇‖B

(magnetic mirror effect) where

µ =
mv2
⊥

2B0

This force acts on particle energy, i.e. it has effect in the velocity space, on
the parallel velocity.
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For the ions distribution function we have

∂f

∂t
+ v‖∇‖f +∇⊥ · (vdrift f)− µ

m
∇‖B‖

∂f

∂v‖
= 0

To solve this equation it is made a Laplace transform after firstly taking
a Fourier representation of the parallel magnetic field.
The imaginary part of the distribution function is

fk = iπδ
(
ω − k‖v‖

) µ
m
k‖B‖,k

∂f

∂v‖

(weNote that the propagator is reduced to a simple resonance in the parallel
direction, no drift taken into account).
The average parallel fluid velocity

u‖,k =
1

n0

∫
dv‖ v‖fk

= −i
√
π

2

v2
⊥

vth,i

B‖,k
B0

k‖∣∣k‖∣∣
(
vϕ
vth,i

)2

exp

[
−
(
vϕ
vth,i

)2
]

the phase velocity is
vϕ =

ω

k‖

The rate of dissipation into ions is

Pk = n0

〈
F‖,ku‖,k

〉
where the operator is defined as

〈AkBk〉 ≡
1

2
Re 〈AkB∗k〉

20.7 Kinetic damping of the poloidal rotation (Haines)

Equation for the parallel component of the ion momentum equation [7]

mini
∂

∂t
〈B · ui〉 = −〈B ·∇ ·Πi〉 (12)

where Πi is the traceless stress tensor. See also Shaing Crume Houlberg.
Note Rosenbluth Hinton mention that 〈(v ·∇) v〉 = 0) End.
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The evolving parallel component for of the total poloidal flow. The pres-
sure balance on a flux surface

0 = −∇Pi
nie

+ E + ui ×B

where Pi is the scalar pressure of ions. The perpendicular flow is

u⊥ =
−∇Pi ×B

eniB2
+
−∇Φ×B

B2

it is actually composed of : diamagnetic flow and ExB flow. One has to add
the parallel flow, u‖.
The toroidal (φ) component of the total flow

uφα =
uα·∇φ
|∇φ|

= u‖α
Bφ

B
− TαBθ

ΩαmαB

(
eΦ′

Tα
+
P ′α
Pα

)
The poloidal (θ) component

uθα =
uα·∇θ
|∇θ|

= u‖α
Bθ

B
+

TαBφ

ΩαmαB

(
eΦ′

Tα
+
P ′α
Pα

)
Using these relations, Hirschman showed that the equation (12) can be writ-
ten in terms of the poloidal flow within a surface

Uθ (ψ) ≡ u ·Bθ

B2
θ

mini
(
1 + 2q2

) 〈
B2
θ

〉 ∂
∂t
Uθ (ψ) ≈ −〈B ·∇ ·Πi〉

The term in the right hand side can be written

〈B ·∇ ·Πi〉 =

〈
Bm

∫
d3v v2

‖n̂ ·∇f i
〉

where f i is the gyro-averaged distribution function. This is the solution of
the equation

∂

∂t
f i +

(
v‖n̂ + vd

)
·∇f i + e

(
v‖n̂ + vd

)
· E ∂

∂ε
f i = C

{
f i
}

(13)
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where ε is the particle energy.
See also Zhu Horton Sugama.
Note : it is taken into account the energetic effect from the drift

motion of the charged particle in the electric field. It is normal that
a motion imposed by the geometry and effected against the electric field to
be a source of energy change.

The solution of the neoclassical equation for the distribution func-
tion f i The bar means gyro-phase averaging, which is a basic assumption
and we shall not write the bar in the following. The solution is obtained by
perturbation based on the smallness of the two neoclassical parameters:

• the drift parameter δ

fi = f0 + f1 + ... where f1 ∼ δf0

• the bounce parameter η

f1 = f
(0)
1 + f

(1)
1 + ... where f (1)

1 ∼ ηf
(0)
1

First the expansion in δ. The zeroth order in δ:

∂

∂t
f0 + v‖b̂ ·∇f0 = C (f0)

The solution of this equation is a Maxwellian:

f0 = n
( m

2πT

)3/2

exp
(
−w
T

)
Nota. Here at the exponent we have to include also the energy of the

particle in the electric potential.
The first order in in δ:

∂

∂t
f1 + v‖b̂ ·∇f1 + vd·∇f0 − vd · eE

∂

∂w
f0 = C (f1)

Now we go to the expansion in the parameter η. The zeroth order
in η of the above equation:

v‖b̂ ·∇f (0)
1 + vd·∇f0 = 0

We can use the relation

vd·∇f0 = −v‖b̂ ·∇
(
Iv‖
Ω

)
∂f0

∂ψ
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and the solution for the function f (0)
1 is of the form

f
(0)
1 = −

(
Iv‖
Ω

)
∂f0

∂ψ
+ g (ψ, λ, w, σ)

The integration “constant”g is independent of θ.
The first order in η of the drift kinetic equation

v‖b̂ ·∇f (1)
1 = − ∂

∂t
f

(0)
1 + C

(
f

(0)
1

)
One can use the periodicity on θ to obtain a constraint from which to

determine f (0)
1 .

Taking the bounce average of this equation we eliminate the left hand
side and obtain an equation for the zeroth order function, f (0)

1 . The
bounce average is taken using the operator〈

B

v‖
·
〉

with the integral in the poloidal coordinate taken between −π and π for
untrapped particles and betwrrn −θ∗ and +θ∗ for trapped particles. This
equation is called : banana constraint equation.〈

B

v‖

[
− ∂

∂t
f

(0)
1 + C

(
f

(0)
1

)]〉
= 0

The lowest order non-zero contribution to the parallel stress
comes from the function f (1)

1 and since the parallel component of the stress
is bounce-averaged

〈B ·∇ ·Π〉 =

〈
mB

∫
d3v v‖

[
− ∂

∂t
f

(0)
1 + C

(
f

(0)
1

)]〉
which shows that only f (0)

1 must be determined.

21 The ambipolarity Hirshman

This text is from NF18, (1978) 917.
It is here just to remind how the "neoclassical inertia factor" arises.
The equation of momentum conservation projected on the parallel direc-

tion ∑
j

mjnj

〈
B·∂uj

∂t

〉
= −

∑
j

〈B ·∇ ·Πj〉
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Now we need an expression for the fluid velocity uj,

uj =

(
uj ·Bθ

B2
θ

)
B

+
R2∇ϕ
〈R2〉

(〈
R2∇ϕ · uj

〉
− uj ·Bθ

B2
θ

〈RBT 〉
)

It has been introduced the polodal projection of the velocity, which after
projection is scaled by Bθ to remove the θ dependence and produce a function
(velocity) that depends on only ψ.

uj ·Bθ

B2
θ

= Kj (ψ)

(usual notation for the poloidal part of the velocity. Hsu Gromley Shaing
bootstrap α)

Then ∑
j

mjnj
∂

∂t

[(
1 + 2q̂2

)
〈uj ·Bθ〉+ 〈R BT 〉

〈R2∇ϕ · uj〉
〈R2〉

]
= −

∑
j

〈B ·∇ ·Πj〉

where

q̂2 ≡ 1

2 〈B2
θ〉

〈B2
T

〉
− 1〈

1
B2T

〉


This reduces to
q̂2 → q2

for small ε.

The static form of the neoclassical parallel stress tensor

〈B ·∇ ·Πj〉

= 3µj

〈(
∇‖B

)2
〉 uj ·Bθ

B2
θ
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22 Inverse Stringer-effect and turbulence mod-
ulation

There is a text on Stringer.

The Stringer effect is the generation of plasma rotation due to a poloidal
non-uniformity of the rate of transport due to plasma turbulence. This trans-
port modulation will couple with the Pfirsch-Schluter toroidal current and
produce a rotation of plasma in the poloidal direction.

The inverse Stringer effect is the opposite form of this relationship.
We assume that there is poloidal rotation and that this is coupled with

Pfirsch-Schluter toroidal current. Then it should induce a non-uniformity of
the poloidal distribution of transport. This is equivalent to a modulation of
the amplitude of the turbulence.
Possibly observations like the coherent modes may be connected with

this.
Or, the strong importance of the direction of ∇B drift relative to the

X-point.

Check again, I remember to have found an objection.

23 Inverse Ranque-Hilsch effect

It is question of the possibility that the effect leading to temperature sep-
aration in the case of the ranque-Hilsch vortex tube can have an opposite
manifestation.
The gradient of temperature and a poloidal rotation, together with an

initial toroidal (axial) movement of plasma = toroidal rotation represent the
initial state. The poloidal rotation is enhanced as a result of an increase of
the radial gradient of the temperature during an external heating applied
to plasma. Then by an inverse Ranque-Hilsch effect the plasma enhances
its poloidal rotation, evolving to a state where the gradient of temperature
(equivalent to a separation of temperature, in the terminology of the Ranque-
Hilsch vortex tube) becomes compatible with the radial distribution of the
angular velocity in the vortex (i.e. the poloidal velocity).
The problem of the possible role of the drift waves in generating and

sustaining the direct Ranque-Hislch effect. This is suggested by several ap-
proaches to the classical, direct, R-H effect, by invoking the structures arising
in the vortex by an instability which breakes the azimuthal symmetry. This
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instability is further invoked by Colgate Lovelace in accreating disks of
protoplanetary formations, and named Rossby instabilities. This practically
means drift wave instabilities in plasma physics. They are acting as semi-rigid
pedals and possibly are the agent that transports the angular momentum
from the center toward the periphery.

The difference between the plasma and the R-H vortex tube: there is no
Larmor radius in the R-H case. Since there is no magnetic field. If Rossby
waves are going to be excited (as propose Colgate Lovelace) they will be
drift waves.

WeNOTE an important difference between the convective cells of Rayleigh-
Benard problem and the rolls of the Rossby waves:

1. in the Rayleigh-Benard problem the convective cells have alternating
direction of rotation

2. in the Rossby rolls the direction of rotation are the same for all the rolls.
There is a picture in Vortex Nucleation, from atmosphere paper.

What determines the radial and poloidal extension of the rolls? It must
be an optimum, related to the effi ciency of thermal transfer via convection.
And the limitation comes intrinsically since the poloidal rotation which is
generated by the rolls acts as a limitation of the radial extension of the rolls.
In Fig.1 of Bortolon Duval Pochelon TCV it can be seen that there

is a small decrease of the temperature profile for electrons and carbon, which
must be explained by the presence of convective cells, more effi cient thermal
transporters.

The generation of convective rolls from drift waves can be seen as a se-
quence of Eckhaus instabilities, leading to suppression of high-k eddies and
generation of larger convective structures. The paper pR1735Eckhaus.
the work by Riley Davies treats the situation where the curve of mar-

ginal stability of the convective solution of the Rayleigh-Benard system is
flat in its dependence on the wavenumber k, like (k − kcrit)2n, the system
is unstable to Eckhaus instabilities (sideband instabilities) of the secondary
type, with rapid succession of them. This means that it is possible that the
number of rolls that is created evolves rapidly from the envelope of the drift
waves to a poloidal wavenumber which is optimum. In the paper Roll like
patterns Proctor it is found a condition for instability.
This may be invoked, if confirmed in the case of convective cells of drift

waves in tokamak, to explain the fast change of the roll geometry until it
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stabilizes at a sequance of few rotating rolls located with their centers on
a magnetic surface. The fact that the poloidal wavenumber is decreasing is
invoked to support the idea that the poloidal velocity that the rolls gener-
ate at their periphery is higher and higher during the sequence of Eckhaus
transitions.

In Shakura Sunyaev the angular momentum propagation is due to tur-
bulent Reynolds stress.

The paper Coherent structures zonal flows Smolyakov Diamond
Malkov discusses the transformation of the zonal flows into coherent struc-
tures. They say: for generation of zonal flows the underlying mechanism is
inverse cascade.
Comment: inverse cascade is a stochastic process, it takes time to gen-

erate a coherent flow (zonal) out of turbulence. Then the process
turbulence → inverse cascade → zonal flow → suppression of turbulence
follwed by generation of large scale coherent structures, needs long time

(Busse says: two days) and has low effi ciency. In addition, they obtain an
equation for the poloidal flow that exhibits solutions of the kink type, here
domain-walls separating regions with different poloidal rotation velocities
and propagating radially.
Possibly not all solutions have been considered. Harmonic perturbations

in the poloidal direction are possible and can trigger KH instabilities leading
to breaking of the zonal flow into large scale coherent convective cells.
Instead, the process
turbulence → coherent structures (convective cells) → wind → zonal flow or poloidal rotation
can be more easily accessible to the plasma under a large temperature

gradient.

The paper Instability Conv Cells Weiland Phys Plasma shows that
the ITG large scale convective cells are subject to instability of shear flow.

24 The ambipolarity

This is our work.
See also Novakovskii.
We assume that there is a difference between the radial fluxes of electrons

and ions. thismay be due to intrinsic diffusion mechanisms, ion-orbit loss to
the limiter, electron drain through an external metallic pin (external plasma
polarization), etc. Then there is a radial electric current. Suppose for
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simplicity that the coordinates are

x ≡ r with êx ≡ −êr (toward the plasma interior)

y ≡ rθ with êy ≡ êθ

z ≡ Rϕ with êz ≡ êϕ

The radial electric field is necessarly accompagned by an inductive electric
field, as results from the radial component of the ∇×B equation

∇×B = 0 = µ0j + ε0µ0

∂E

∂t

∣∣∣∣
x

0 = µ0jx + ε0µ0

∂Ex
∂t

The conservation of the ion momentum in the radial direction is

nimi

(
∂vx
∂t

+ vy
∂vx
∂y

)
= −∂p

∂x
+ eniEx + enivyBz +Rx

or, after evaluating the order of magnitude and neglecting some terms,

vy = −Ex
Bz

The conservation of the ion momentum in the poloidal direction is

nimi

(
∂vy
∂t

+ vx
∂vy
∂x

)
= −∂p

∂y
+ eniEy − enivxBz +Ry

or

vx = − mi

eBz

∂vy
∂t

It results that the ion poloidal velocity is

viy =
1

BzΩi

∂Ex
∂t

This velocity is actually the poloidal polarization velocity.
The radial current is

jx = eniv
i
x − enevex

= −ε0
∂Ex
∂t

which can be rewritten

eniv
i
x − enevex = ε0Bz

∂viy
∂t
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Replacing the formula for the poloidal ion velocity, it reads

−ni
mi

Bz

∂viy
∂t
− enevex = ε0Bz

∂viy
∂t

or

−enevex = ε0Bz

(
1 +

c2

v2
A

)
∂viy
∂t

Expressing in quantitaive terms, we have

vex = −ε0Bz

en

(
1 +

c2

v2
A

)
∂viy
∂t

= −2 · 10−12
(
1 + 2 · 103

)(∂viy
∂t

)
The same relation can be expressed as

jx

(
1 +

nimi

ε0B2
z

)
= −enevex

The physical image can be as follows: suppose we generate a different ra-
dial flux of electrons and ions. This generates a radial electric current which,
constrained by the ∇×B equation, produces the time variation of a radial
electric field. Since there is a connection between the radial electric field and
the poloidal velocity, the time variation of the radial field is equivalent to a
time variation of the poloidal velocity: plasma begins to rotate without any
delay. But the time variation of the poloidal velocity (momentum) is related
to the other forces, in particular (and it is essentially this one) to the v ×B
force. The time variation of the poloidal velocity imposes the generation of
a radial ion flux (such as this one, combined with the magnetic field, to keep
the momentum balance in poloidal direction). This new radial ion flux fol-
lows the radial electron flux in order to reduce the radial electric current
and reinstore the ambipolarity.

24.1 Sheared velocity rotation Horton Dong. Kinetic
treatment for ITG

The equation of motion for the particles

d2r

dt2
=

e

m
E (x) êx + Ωv×n̂

v =
dr

dt

Ω =
|e|B
m
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the constants of motion

α ≡ total energy of the perpendicular motion

=
1

2

(
v2
x + v2

y

)
+
|e|Φ0

m

β ≡ thermal energy of the parallel motion

=
1

2

[
v‖ − v0‖ (x)

]2
Xg ≡ position of the guiding center

= x+
vy − vE (Xg)

Ω

where vE (Xg) =
−E (Xg)

B

Note the system of coordinates that makes the electric velocity to be
−E/B. End.

25 Torque due to the ICRH

25.1 The physical explanation of the ICRH - induced
rotation (Chang White)

The papers by Chang, White, Bonoli about ICRH rotation.
The idea is the loss of omnigenity of the bananas of ions after transversal

heating.
The width of the banana of the heated ion is larger

width ∼ v2
⊥

and the virtual center of positions of the ion on banana moves slightly, which
is a radial current.
Later, numerical simulation where the collisional transfer from the ener-

getized ions to the bulk ions and electrons are calculated. Radial profiles of
torque for rotation in the toroidal direction.

Eriksson measurements on JET of ICRH rotation.
The ICRH torque is due to space variation of the density of torque trans-

ferred to each resonant ion. The ions move on bananas and the conservation
of J leads to displacement of the tips of the bananas.
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It results that the ICRH torque is opposite to the rotation that is seen in
experiments.
Their conclusion is that

ion rotation ∼∇pi

is related to the gradient of the pressure of the ions.

Comment on this result
We must consider the change in the local spatial distribution of the pres-

sure due to heating. Then baroclinic term arises.
This would produce vorticity

∂ω

∂t
∼ 1

ρ3
∇ρ×∇pi

but this would mean poloidal rotation, which, being weak, cannot exist. The
other term from this equation balances the baroclinic term

0 = ∇‖j‖ +
1

ρ3
∇ρ×∇pi

and this gives a chance to toroidal rotation born from baroclinic term, related
with the gradient of the ion pressure.
Their measurement has shown good correlation

momentum density ∼ ∇pi

END
The radial current

jrfr > 0

which means from the interior to the exterior of the plasma, produces

Er < 0

This means that the potential increases as we go to larger radii (toward the
edge). Normally the potential is negative inside plasma and, being negative,
rises slowly toward the plasma edge r = a.
The condition of equilibrium is that the polarization radial current with

which the plasma responds to the rf current is

jplasmar = −jrfr

261



and the force due to this radial return current is balanced by the viscosity
force

0 = −∇ ·Π− jprBϕ

where Π is derived from the perpendicular component of the viscous tensor

Π⊥ = 3εµPi

(
Vθ
vi

)(
B

Bθ

)
sin θ

The viscosity comes from the collisional friction between the trapped and
untrapped particles.
The net torque is zero:

1. the high energy particles, the tail of the distribution function, with the
current jrfr have a torque, and

2. the bulk plasma, due to the return current jpr .

We have
jrfr ×B + jpr ×B = 0

which means that when the tail particles are accelerated in one direction the
bulk plasma particles are accelerated in the opposite direction.

Observation in Alcator C by Rice the toroidal velocity due to ICRH
central heating in H-mode is

vtor = 1.2× 105 (m/s)

= 120 (km/s)

in co-current direction. The toroidal rotation profile decreases with increas-
ing r.
The radial electric field

Er = 300 (V/cm)

= 30 kV/m

When the plasma current is reversed, the direction of toroidal ro-
tation changes accordingly such as to remain co-current.
This means that there is a connection with the current distribution or

with the direction of the poloidal magnetic field Bθ. This may come from
the compatibility of the helicities (vθ, vtor) and (Bθ, Btor).
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26 Rotation induced by alpha particles

The paper by Rosenbluth Hinton.
The alpha particles creation leads to a current that is radial and induces

a torque.
After a reaction of fusion in which a α particle is created the α particle

will move to the trajectory banana which is characteristic for the magnetic
surface where the particle was born. This leads to a radial current.
It is because there is a spatial (radial) profile of the rate of creation of

α particles, i.e. a nonuniformity of the rate of born, that there is a radial
current of alpha particles.

∂fα
∂t

+
(
v‖n̂ + vd

)
·∇fα = Cαefα + Sα

The guiding centre drift velocity of the α particle is

vd =
1

Ω
n̂×

(
µ∇B + v2

‖ (n̂ ·∇) n̂ +
e

m
∇φ
)

which can be written as

vd = −v‖n̂×∇
(v‖

Ω

)
Ωα =

eαB

mα

v‖ = v
√

1− λB
where

λ =
µ

ε
=
v2
⊥/ (2B)

v2/2
=

1

B

v2
⊥
v2

= velocity pitch angle

The collision operator

Cαef = νs
1

v2

∂

∂v

(
v3f
)

where

νs ≡ slowing down on the electrons

νs =
me

mp

1

τ e

τ e ≡ electron-ion collision time
The source of alphas

Sα =
·
n (ψ, t)

1

4πv2
0

δ (v − v0)
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26.1 Characteristic parameters

The ratio between the slowing down frequency and the bounce frequency

νs
vth/ (qR)

� 1

which means that the particle makes many bounces before being slowed down
collisionally by the electrons.

The ratio between the frequency associated to the guiding centre drift
and the frequency of bounce

vd/Lα
vth/ (qR)

� 1

Here Lα is the gradient length of the distribution of alpha particles. This
means that the particle makes many bounces before the trajectory moves
due to the guiding centre drift on a distance Lα. The radial motion is much
slower than the bounce motion.

It is defined a single range and a singe small parameter

δ ≡ νs
vth/ (qR)

∼ vd/Lα
vth/ (qR)

δ � 1

26.2 Expansion of the distribution function of the α

particles

The expansion is made in the parameter δ.

fα = f−1
α + f 0

α + f 1
α + ...

The expansion must be replaced in

∂fα
∂t

+
(
v‖n̂ + vd

)
·∇fα = Cαef + Sα

26.2.1 The order f−1

The first order is −1:
n̂ ·∇f−1 = 0

which means that the function f−1 is constant on the surfaces.
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26.2.2 The order of f0

The next order is zero-th order

∂f−1

∂t
+
(
v‖n̂ + vd

)
·∇ (f−1 + f0) = Cαef−1 + Sα

The time variation of the function f−1 is slow and is comparable with the
variation of the function f0 in the magnetic surface, i.e. the term v‖n̂ ·∇f0.
The collision operator is applied on the function f−1 since the resulting term
is small. The deviation from due to guiding centre drift motion vd are small
when combined with f0-gradient. When they combine withthe gradient of
f−1 the deviation must be retained

∂f−1

∂t
+ v‖n̂ ·∇f0 + vd ·∇f−1 = Cαef−1 + Sα

or

v‖n̂ ·∇f0 = Cαef−1 + Sα

−∂f−1

∂t
−vd ·∇f−1

Here we replace the gradient with derivation to the function ψ, which means
almost radial

v‖n̂ ·∇f0 = Cαef−1 + Sα

−∂f−1

∂t

−vd ·∇ψ
∂f−1

∂ψ

The variation of the function f0 in the magnetic surface can be calculated
if we know f−1.
The equation is now averaged on the bouncing motion, of either trapped

or passing particles

A ≡

∮
dθ

v‖n̂·∇θ
A∮

dθ
v‖n̂·∇θ

The denominator is replaced by the notation

T ≡
∮

dθ

v‖n̂ ·∇θ
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We notice that
v‖n̂ ·∇θ =

v‖
qR

=
1

time of bouncing
The average on bounce motion

v‖n̂ ·∇f0 = Cαef−1 + Sα

−∂f−1

∂t

−vd ·∇ψ
∂f−1

∂ψ

and we take into account the periodicity of the left-hand side term, which
means that it will disappear by bounce averaging

v‖n̂ ·∇f0 = 0

We have the equation

∂f−1

∂t
= Cαef−1 + Sα − vd ·∇ψ

∂f−1

∂ψ

We have to calculate

vd ·∇ψ = −v‖n̂×∇
(v‖

Ω

)
·∇ψ

= −v‖ [∇ψ × n̂] ·∇
(v‖

Ω

)
and, assuming that

1. the magnetic potential ψ grows toward the exterior of the torus such
that its gradient is positive directed to the exterior

2. the radial coordinate is directed toward the magnetic axis, it is then
opposite to the direction of ∇ψ.

Then
∇ψ = −êr (RBϕ)

∇ψ × n̂ = −I êr × n̂

= −I (−ê⊥)

' I êθ

We have

∇Q (r, θ, ϕ) =

(
∇r ∂

∂r
+∇θ ∂

∂θ
+∇ϕ ∂

∂ϕ

)
Q
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We will take another way. From the text plasma.tex we use

vD·∇ψ = v‖
B ·∇θ
B

∂

∂θ

(
ρ‖

B· (∇ψ ×∇θ)
B ·∇θ

)
and we take into account that in the case of circular surface

B ·∇θ
B

∂

∂θ
=

Bθ

BT

1

r

∂

∂θ

=
1

qR

∂

∂θ

' ∂

∂z
∼ ∇‖

which makes these factors to combine in

v‖
B ·∇θ
B

∂

∂θ
= v‖

1

qR

∂

∂θ

from here we retain
n̂ ·∇θ =

1

qR

The other factor of the full expression requires the calculation of

B· (∇ψ ×∇θ)
B ·∇θ =

n̂ · (RBϕ) (−êr)× (1/r) êθ
n̂ ·∇θ

=
1

1/ (qR)
RBϕ

1

r
n̂ · êϕ

= (RBϕ) (qR)
1

r

(
Bθ

Bϕ

)
= RBϕ

(check however the signs) and

ρ‖
B· (∇ψ ×∇θ)

B ·∇θ = ρ‖ (RBϕ)

Now we return to the initial expression of the projection of the drift
velocity on the radial direction and we obtain

vD·∇ψ = v‖
1

qR

∂

∂θ

×
(
ρ‖RBϕ

)
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since
RBϕ = R0B0ϕ = const

vD·∇ψ = v‖
1

qR
RBϕ

∂

∂θ

(v‖
Ω

)
Introducing the expressions

I ≡ RBϕ

1

qR

∂

∂θ
= n̂ ·∇θ

The expression can be re-written

vD·∇ψ = Iv‖n̂ ·∇θ
∂

∂θ

(v‖
Ω

)
and this is the expression used by Rosenbluth Hinton for alphas.

Taking into account that ∇ψ = RBϕ (êr) the factor RBϕ simplifies from
the left and right, leaving

vD,r =
v‖
Rq

∂

∂θ

(
ρ‖
)

which may be a useful approximation for the radial component of the drift
velocity.

Now, separately, the term with the guiding centre drift is

vd ·∇ψ = Iv‖n̂ ·∇θ
∂

∂θ

(v‖
Ω

)
= I

v‖
qR

∂

∂θ

(v‖
Ω

)
= Iv‖

∂

∂l‖

(v‖
Ω

)
The average on bouncing is

vd ·∇ψ =
1

T

∮
dθ

v‖/ (qR)
I
v‖
qR

∂

∂θ

(v‖
Ω

)
=

1

T
I

∮
dθ

∂

∂θ

(v‖
Ω

)
= 0

by periodicity, for both trapped and passing particles.
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Then the equation obtained from the zeroth order, after bounce-averaging,
is

∂f−1

∂t
= Cαef−1 + Sα

and does not imply at all f0, but exclusively f−1. Rosenbluth and Hinton
solve this equation

f−1 =
1

νs

·
nα [ψ, t− τ (v)]

1

4πv3
[Θ (v − v0 exp (−νst))−Θ (v − v0)]

with the initial condition
f−1 (t = 0) = 0

where
τ (v) ≡ 1

νs
ln
(v0

v

)
The factor containing the Heaviside functions Θ works in the velocity space.
In the velcoity space this is a finite interval on the v-axis: it starts to be
different of zero (actually equal to 1) after the value v0 exp (−νsτ) and be-
comes again zero at v = v0 due to the combination of the θ functions. The
interval on the v-axis is dependent on time and becomes at the limit τ →∞
the interval [0, v0].

After obtaining a solution for the distribution function f−1 we can re-
turn to the equation written for the order f0 but now without the bounce
averaging.

v‖n̂ ·∇f0 = Cαef−1 + Sα

−∂f−1

∂t

−vd ·∇ψ
∂f−1

∂ψ

but the three terms in the Right Hand side give zero since they have balanced
in the averaged version of the equation. It remains

v‖n̂ ·∇f0 = Iv‖n̂ ·∇θ
∂

∂θ

(v‖
Ω

) ∂f−1

∂ψ

= v‖n̂ ·∇
(
Iv‖
Ω

)
∂f−1

∂ψ

The solution is

f0 = −I
(v‖

Ω

) ∂f−1

∂ψ
+g
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where g is the homogeneous solution. To determine g we will write the
equation for the next order f1 and average over bounce to find a constraint
for g.

26.2.3 The order of f1

The next order is f1 and the drift-kinetic equation gives

v‖n̂ ·∇f1 = Cαef0 −
∂f0

∂t
− vd ·∇f0

Now we need the derivative of the zeroth order function mf0 in the magnetic
surface, along the direction of θ. This is possible since f0 has a variation on
the poloidal direction

vd ·∇θ = −Iv‖n̂ ·∇θ
∂

∂ψ

(v‖
Ω

)
The bounce average of the gradient of the function f0 advected by the

guiding centre drift velocity is zero

vd ·∇f0 = 0

This will be used in the bounce average of the equation for f1, and allows
to determine g:

∂g

∂t
− νs

1

v2

∂

∂v

(
v3g
)

= I
(v‖

Ω

)[ ∂
∂ψ

∂f−1

∂t
− νs

1

v3

∂

∂v

(
v4∂f−1

∂ψ

)]
To calculate the bounce average of the ratio v‖/Ω we use(v‖

Ω

)
=

1

T

∮
dl

Ω

=
1

T

∮
qRdθ

Ω

The solution for g is

g = I
(v‖

Ω

)∂f−1

∂ψ

Clearly it is non-zero only for passing, untrapped, particles.
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Returning to the expression of the function f0 we get

f0 = −I
(v‖

Ω

) ∂f−1

∂ψ
+ g

= −I
(v‖

Ω

) ∂f−1

∂ψ
+ I
(v‖

Ω

)∂f−1

∂ψ

or

f0 = −I
[(v‖

Ω

)
−
(v‖

Ω

)] ∂f−1

∂ψ

26.3 Calculation of the radial current from alpha par-
ticles

The torque exists only if there is a radial electric current which combines
with the magnetic field to induce that torque and plasma rotation.
The radial current will be determined as average over the magnetic surface

of the guiding centre drift velocity projected on the direction perpendicular
on the surface and averaged over the surface

〈jα ·∇ψ〉 = eα

〈∫
d3v vd ·∇ψ fα

〉
where the operator of averaging over the surface si

〈A〉 =

∮
dθ

B·∇θA∮
dθ

B·∇θ

The expression of the guiding centre drift velocity projected on ∇ψ is

vd ·∇ψ = Iv‖n̂ ·∇θ
∂

∂θ

(v‖
Ω

)
= Iv‖n̂ ·∇

(v‖
Ω

)
and suggests an integration by parts in the expression of the current

〈jα ·∇ψ〉 = −eαI
〈∫

d3v
(v‖

Ω

)
v‖n̂ ·∇fα

〉
Now we note that f−1 does NOT contribute to the integral due to the

condition of remaining constant over the magnetic surface, the first equation
in the expansion, n̂ ·∇f−1 = 0.
The function f0 also does NOT contribute to the integration-average.
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The first to contribute is f1. For f1 we do not have yet an eplicit solution
but we have precisel

v‖n̂ ·∇f1 = Cαef0 −
∂f0

∂t
− vd ·∇f0

The last term, the drift term vd ·∇f0 does NOT contribute〈∫
d3v
(v‖

Ω

)
vd ·∇f0

〉
= 0

We remain with only two terms

〈jα ·∇ψ〉 = −eαI
〈∫

d3v
(v‖

Ω

)(
Cαef0 −

∂f0

∂t

)〉
The transitory term〈

jtrα ·∇ψ
〉

= eαI

〈
1

Ω

∫
d3v v‖

∂f0

∂t

〉
The frictional term〈

jfrictα ·∇ψ
〉

= −mαI

〈
1

B

∫
d3v v‖Cαef0

〉
26.3.1 The transitory term

The surface average of the radial current in the transitory regime is〈
jtrα ·∇ψ

〉
= eαI

〈
1

Ω

∫
d3v v‖

∂f0

∂t

〉
The function f0 depends on the first order, f−1.

f0 = −I
[(v‖

Ω

)
−
(v‖

Ω

)] ∂f−1

∂ψ

and
∂f0

∂t
= −I

[(v‖
Ω

)
−
(v‖

Ω

)] ∂2f−1

∂ψ∂t

and we need the time derivative of the distribution function in order −1.

∂f−1

∂t
=

·
nα

1

4πv2
δ (v − v0 exp (−νst))

+
∂
·
nα
∂t

1

νs

1

4πv3
[Θ (v − v0 exp (−νst))−Θ (v − v0)]
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With this term we return to the expression of the function ∂f0/∂t which
we use further to calculate the transitory part of the radial alpha current〈

jtrα ·∇ψ
〉

= −eαI2v
2
0

2
I ∂

∂ψ

[
·
nα (ψ, 0) exp (−2νst)

+

∫ t

0

dτ exp (−2νsτ)
∂

∂t

·
nα (ψ, t− τ)

]
In this expression it is further assumed that the source is constant. This

makes disappear the second term in the bracket. The result is〈
jtrα ·∇ψ

〉
= −eαI2v

2
0

2
I ∂

∂ψ

[
·
nα (ψ, 0) exp (−2νst)

]
and shows that the torque lasts only on the duration of the slowing down
time, τ s.

Note. This result may seem strange: we have continuous creation of the
alpha particles, which results from taking

·
na (ψ, t) = const

and we know that every new alpha particle will make a motion toward its
final position on the banana trajectory, with an associated radial current.
Therefore we have continuous events of radial currents and torques, at the
limit a continuous torque applied on plasma. It is true that every individual
act of alpha-motion and radial current is finite and has no further effect.
The alpha particle and its associate electrons become usual particles of a
population that has been Maxwellianized by slowing down due to collisions
with electrons. Everything that they will do further will be symmetric, etc.
similar to what happens for protons of the background gas.
End.

The quantity

I =
∑
σ

〈
1

2Ω

∫
Bdλ

[
ξ

Ω
− ξ

Ω

]〉
where

ξ ≡
∣∣∣√1− λB

∣∣∣
I =

(2ε)3/2

Ω2
α0

{
8

9π
+

∫ 1

0

dk

k5/3

[
2

π
E
(
k1/2

)
− π

2K (k1/2)

]}
' (2ε)3/2

Ω2
α0

× 0.38
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26.3.2 The collisional (frictional) term

The collisional term〈
jfrictα ·∇ψ

〉
= −mαI

〈
1

B

∫
d3v v‖Cαef0

〉
= −eαI

〈
1

Ω

∫
d3v v‖ νs

1

v2

∂

∂v

(
v3f0

)〉
Here we replace

f0 = −I
[(v‖

Ω

)
−
(v‖

Ω

)] ∂f−1

∂ψ

The loss condition
2I
v‖
Ω
> |ψ − ψs|

where ψs is the value of the magnetic potential at the plasma surface.

26.4 The equation of the toroidal momentum

The baisc equation is the momentum conservation

mini

[
∂u

∂t
+ (u ·∇) u

]
= −∇ (pe + pi)−∇ ·Πi

+
1

c
j×B

+F

where the forces are

F

= Fiα (collisional momentum transfer to ions)

+Feα (collisional momentum transfer to electrons)

+Fif (collisional momentum transfer to fast ions)

+Fef (collisional momentum transfer to fast electrons)

The approximation is
F ' Fiα

i.e. the NBI ions are ommitted. Also loss on ions.
The equation is multiplied with

×Rêϕ
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and averaged over the magnetic surface

mini
∂

∂t
〈uϕR〉+mini 〈Rêϕ · (u ·∇) u〉

= −〈Rêϕ · (∇ ·Πi)〉

+
1

c
〈j ·∇ψ〉

+ 〈Rêϕ · Feα〉

The surface average of the term containing the convective momentum deriv-
ative is zero

〈Rêϕ · (u ·∇) u〉 = 0

The reason for which we need a current radial in plasma opposite to the
current of the alphas, results from the Ampere equation

∇×B = µ0 (jα + j) + ε0µ0

∂E

∂t

the left hand side term is zero. The equation is multiplied with∇ψ to obtain
the radial component and averaged over the surface

0 = 〈(jα + j) ·∇ψ〉+ ε0

〈
∂E

∂t
·∇ψ

〉
The term with the electric field will aquire the coeffi cient

ε0

(
1 +

c2

vA2

)
� 1

and it will be neglected. Then

〈jα ·∇ψ〉 = −〈j ·∇ψ〉

Then one obtains

mini

〈
R
∂uϕ
∂t

〉
= −〈Rêϕ · (∇ ·Πi)〉

− 〈j ·∇ψ〉 − 〈Rêϕ · Fαe〉

The last two terms in the right will cancel each other.
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27 Ion orbit loss rate in tokamak (Shaing [11])

This part (rotation due to ion-loss) is also in plasma, general, ion_loss notes.
To explain the H-mode in tokamaks. The loss of ions is localized in the

high energy part of the distribution function, since here the ions are less
collisional. Being less collisional, they have rather clear banana trajetories
and in their motion they can hit the limiter.
But the expulsion of a “hot”ion from the plasma is simultaneously com-

pensated (electrically) by the entrance of an ion from the exterior of the
plasma toward the interior. This influx is driven by the ion viscosity which
is essentially determined by a non-zero rotation of the plasma.
Note
It must be clarified in a physical picture how the viscosity acts to sustain

the return current which compensates the ion-loss.
The ion viscosity is a transport of momentum. It is probably collisional.

It seems that the rotation of plasma is essential.
Why the electrostatic charge created in the entire plasma column by the

loss of a cherged ion is not a suffi cient force to attract and swallow a cold ion
from SOL just to maintain neutrality.
End.

It concerns the lower temperature ions, i.e. the ions of the Pfirsch-
Schluter-plateau, more collisional. This again rises the problem of Stix :
it is necessary to have the poloidal rotation + collisions in order to get a
radial electric current. This current will participate in the radial component
of the ∇×B equation, to compensate (together with the polarization elec-
tric current) the outflux of directly lost hot ions. Also in Roenbluth it is the
current of compensation (return current) of the lost very-hot-ions at NBI.
This problem of balance of ion radial currents can be re-stated: the loss of

ions is the primary process; but the plasma establishes an electric radial field
andthe corresponding rotation in order to obtain, through the ion-viscosity,
a radial electric current of ions which balances the outgoing ion flux.

• the outgoing ion orbit loss flux (in banana regime) , is balanced by

• incoming viscosity driven ion flux (plateau-Pfirsch-Schluter)

to mentain ambipolarity at the steady state.
Nota. It must be understood that the disappearence of an ion (whose

banana orbit hits the wall or the limitator) from the plasma should not be
seen as a current directed to the wall. On the contrary, one expects
that the ion which will replace the lost ion, will come from the plasma border
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toward the centre. So, there is a current of response, the so-called incoming
current or return current.
The effect of viscosity is separated in two in order to emphasize the two

different effects:

1. “viscosity-driven flux” is the flux driven by the viscosity contributed
by the particles in the regime plateau-Pfirsch-Schluter. Actually is
the flux of ions of replacement, the return current.

2. “ion orbit loss flux”is the flux driven by the viscosity of the particles
in the banana regime. (This is because the loss of ions is due to the
difference in the radial drifts of the electrons and the ions, when the
drifts are not too much perturbed by the collisions , i.e. in the banana
regime). But it is not clear how the viscosity is involved in the direct
loss of banana ions to the limiter. It is first said that the high
energy ions are likely to leav plasma since (1) they have large bananas,
and (2) they are less collisional.

When the two fluxes (outcoming and incoming) are integrated over the
velocity space, they approximately cancel each other. The net ion flux can-
cels to order

√
me/mi when Er is determined proprely from the momentum

balance equation.

NOTE. In the paper Shaing insists on the difference between the ion loss
current and the plasma current density. The latter is the current formed by
ions which replace the ions lost by the intersection of their banana with the
wall.
The torque associated to the ion orbit loss flux is counterbal-

anced by the torque associated with the viscosity. At steady state
there is no net radial current across flux surfaces and there is no net torque
applied on the plasma.
Various currents which constitutes the radial plasma current:

• the ion orbit loss current eΓorbit

• the viscosity-driven current;

• the polarization current;

At steady state:

• the radial current density jr which is proportional with ∂Er/∂t and
the polarization current vanish
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• the ion orbit loss current eΓorbit is balanced by the viscosity-driven flux

The equation used by Shaing

(v‖n̂ + VE) ·∇θ∂f
∂θ

+ vd ·∇ψ
∂f

∂ψ
= C (f)

where VE is the electric velocity. The equation is simply
(
v‖n̂ + vd + VE

)
·

∇f = C (f) : without explicit time derivative (since the process here is not
dynamic, as for example when we study the decay of plasma rotation by
the torque generated from the radial electric current of ions (compared to
electrons) in the presence of rotation and collisions, see Stix; also, without
energetic term in the drift kinetic equation; this should be accounted for in
other cases, as for example the transit time magnetic pumping, where
the viscosity is noncollisional. This appears in [12] where the equation is
(un̂ + vd + V) ·∇f +

·
w∂f/∂w = 0; and the equation is so because there is

a strong plasma rotation composed of : diamagnetic, electric and parallel.

The v ·∇f part of the equation (left hand side) The first part in the
equation is of this form because the drift kinetic distribution function f is
function of only the poloidal θ coordinate and radial r coordinate. The
variables are (the ion charge is e, i.e. e = |e|):

ψ, θ

E =
v2

2
− |e|
mi

Φ

µ

The effects of orbit squeezing can be taken into account by employing a new
coordinate ψ∗ istead of ψ.

ψ∗ = ψ − I

SΩ

(
v‖ +

I

Ω

B2

B2
0

e

mi

∂Φ

∂ψ

)
where the squeezing factor is

S = 1 +

(
I

Ω0

)2
e

mi

∂2Φ

∂ψ2

NOTE. For comparison, the variable ψ∗ representing the drift surface is
given in [13] as

ψ∗ ≡ ψ −
v‖
Ω

= const
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(we could say ψ∗ = ψ−ρ‖ but take the variable poloidal Larmor radius, with
the parallel velocity variable up to zero and change of direction, and with B
also variable). Here the function ψ is

ψ =
Ψ

RBϕ

where Ψ is the poloidal magnetic flux function. A reasonable approximation
for the magnetic field variation in space

RBϕ = const

If we assume a constant current density we obtain

ψ =
1

qR

r2

2

END of the NOTE

NOTE
The second term in

v‖ +
I

Ω

B2

B2
0

e

mi

∂Φ

∂ψ

represents a correction to the parallel velocity when a radial electric field is
present

RBϕ

eB
mi

B2

B2
0

e

mi

1

2πRBθ

∂Φ

∂r

≈ 1

2π

Bϕ

Bθ

B

B2
0

(−Er) =
1

2π

1

hB0

Bϕ

Bθ

(−Er)

=
1

2π

Bϕ

hB0

Vr

≈ 1

2π

1

h2
Vr

Then approximate h.
End.
The quantity Ω0 is Ω calculated at the magnetic axis. The shear of the

electric field Φ′′ is considered constant over the width of the banana orbit.
It can be shown that

ω = (v‖n̂ + VE) ·∇θ ' − I
Ω

n̂ ·∇θ ∂ψ∗/∂ψ
∂ψ∗/∂E
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and

vd ·∇ψ =
I

Ω
n̂ ·∇θ ∂ψ∗/∂θ

∂ψ∗/∂E

We note
n̂ ·∇θ =

∂θ

∂l‖

with

dlθ = dl‖ × cos (n̂, êθ) = dl‖ sin (n̂, êϕ)

= dl‖
Bθ

B

dl‖ = dlθ
B

Bθ

=
rB

Bθ

dθ = qRdθ

∂θ

∂l‖
=

1

qR
, n̂ ·∇θ =

1

qR

The meaning of the notation is

I = R2B ·∇ϕ = RBϕ

The drift associated with the poloidal field variation ∂B/∂θ have been ne-
glected. Taking this relation into the drift-kinetic equation we get

(v‖n̂ + VE) ·∇θ∂f
∂θ

+ vd ·∇ψ
∂f

∂ψ
' ω

∂f

∂θ

∣∣∣∣
ψ∗,E,µ

We note that ω is a frequency which has the role of a coordinate which com-
bines the parallel velocity and electric E×B particle velocities projected
on the poloidal direction, divided at the local small radius r. Note We
must check the flux variable ψ∗ with the “drift surface”variable, as intro-
duced in the review of Hazeltine and Hinton.

The collision operator Consider only the pitch-angle scattering op-
erator

C (f) =
νD
2

∂

∂ξ

(
1− ξ2

) ∂f
∂ξ

where νD is the deflection collision frequency and

ξ =
v‖
v

is the pitch angle.
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Change of variables
(ψ, ξ)→ (ψ∗, ω)

Keeping the highest order derivatives, one obtains

C (f) ' νD
2

[
(vn̂ ·∇θ)2 ∂

2f

∂ω2
− 2

Iv2n̂ ·∇θ
ΩS

∂2f

∂ω∂ψ∗
+

(
Iv

ΩS

)2
∂2f

∂ψ2
∗

]

Here it has been approximated 1−ξ2 ≈ 1. This is valid since it is the barely
circulating and the barely trapped particles which contribute to the
ion orbit loss.
A new variable is introduced, ω̂ which makes possible to connect these

expressions which will finally give f with the neoclassical distribution function
for ions:

ω = σω̂ n̂ ·∇θ
(

1− k sin2 θ

2

)1/2

Then

• k < 1 corresponds to poloidally circulating particles, and

• 1 < k <∞ corresponds to the poloidally trapped particles.

Here the direction of the variable ω is σ = ±1.

NOTE
that we have now a factor that gives the variation of population of trapped

particles on magnetic surface√
1− κ sin2 (θ/2)

as in Galeev Sagdeev.
End.

Another change of variables is suggested by the form of the drift flux
function. We take

ψ∗ = ψ0 −
I

ΩS
ω̃0

assuming
ε� 1 but |S| ε < 1
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then

ω̂2 = ω2
0

B2
0

B2
x

+2SE +

+2 |S| ε
[
µB0 +

(
ω0
B0

Bx

− I 1

B0

∂Φ

∂ψ

)2
]

where

E = E − µB0 −
eΦ

mi

− 1

2

(
ω0
B0

Bx

− I 1

B0

∂Φ

∂ψ

)2

The notation ω̃0 represents ω0B/Bx where

ω0 = v‖ + I
1

B0

∂Φ

∂ψ

evaluated at ψ = ψ0 and θ = 0 or π (depending on where the particles are
trapped: θ = 0 for inside of a tokamak, θ = π if the particle is trapped
outside of the tokamak). Bx is the value of B evaluated at θ = 0 or θ = π.

27.0.1 Possibility of reprezentation of the effect of the ion orbit
loss flux as a force in the balance equations

The effect of the ion orbit loss flux can be modelled by a force Σ . The basis
for this modellization is the fact that every particle loss mechanism
has a force which corresponds to it. The example is the intrinsically
nonambipolar flux of particles which is driven by the viscous force

〈Γπ ·∇ψ〉 = −
(
〈R2〉
Ie

)
〈B ·∇ ·Π〉

(this is also in Shaing Crume Houlberg) . Similar to this example, the
flux that exists only in the presence of the ion orbit loss region in the phase
space is considered associated to a force Σ. This method, of separating the
ion orbit loss flux from the viscous flux is useful, since the viscosity can be
calculated in the neoclassical approach but only if we ignore such processes
ion orbit loss, which limits the integration on velocity.
Introducing this force Σ, one can repeat the calculation of Hirschman to

obtain

1〈
B2
p

〉 (〈B2
〉
− I2

〈R2〉

)
∂ 〈V ·Bp〉

∂t
+

I

〈R2〉nmi

〈J ·∇ψ〉

=
I

〈R2〉nmi

〈Jorb·∇ψ〉 −
1

nmi

〈B ·∇ ·Π〉+

〈(
I2

〈R2〉B2
− 1

)
B ·Σ
nmi

〉
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where the radial current due to the orbit ion loss is related to the force Σ

〈Jorb·∇ψ〉 =

〈
∇ψ · B×Σ

B2

〉
At steady state, the radial component of the ∇×B equation which is

0 =

(
µ0J + ε0µ0

∂E

∂t

)
r

will give

µ0Jr = 0

∂Er
∂t

= 0

However, the orbit loss curent Jorb is not zero. It is compensated by the
viscosity driven current, which is seen from the equation at stationarity

I

〈R2〉nmi

〈Jorb·∇ψ〉+

〈(
I2

〈R2〉B2
− 1

)
B ·Σ
nmi

〉
=

1

nmi

〈B ·∇ ·Π〉

if we neglect the second term in the left hand side.
The meaning of this expression is that: high energy ions are lost and the

low energy ions respond by a current driven by their viscosity.

28 Plasma flows associated with ion orbit loss

28.1 Notes

Effects to be accounted for:

• neoclassical viscosity effect

• torque due to the prompt loss of ions

The physical reason for the formation of the electrostatic potential at the
plasma edge is the difference of the orbit sizes of electrons and ions. High
energy ions (suprathermal component of a tail of a Maxwellian distribution)
have the largest orbit width and are lost from the largest distance from the
wall : this means that the ions which are lost in a point very close to the
the border belong actually to a region deeper into the plasma. Those which
have greater parallel velocity but still smaller than that necessary to become
transiting particles, are stoped (i.e. have banana tips) in the inner part of
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the tokamak plasma. They have the larger radial drift on their bananas,
which also means that they belong to magnetic surfaces (in the sense that
the average of the trajectory is there) deeper into the plasma. When such
ion is lost through collision, a positively charged particle from a point deep
in the plasma disappears.

29 Toroidal momentum input to Tokamak plasma
from neutral beams and generation of ro-
tation (Rosenbluth Hinton)

This is the paper by Rosenbluth and Hinton. Similar with another paper
by the two authors in which the rotation is generated by the alpha particles.

29.0.1 General

Neutral beam injection will be made transversal to plasma, due to problem
of accessibility.
Most of the ions will be trapped.
One usually works with a separation of populations:

• fast ions

• plasma

The mechanism of momentum transfer to the plasma, in the
case of injection into trapped ion orbits, is (A) a j×B torque which
results from fast ion radial current. The birth of fast ions and their subse-
quent orbital motion cause a radial current. This current must be cancelled
by a radial current flowing in the rest of the plasma. This radial cur-
rent causes a torque on the plasma .
In addition, (B) there is a torque from due to collisional friction with

the fast ions.

T = −〈jfast·∇ψ〉 − I
〈

1

B

(
F‖fast−e + F‖fast−i

)〉
(14)

In this paper the equation of motion of plasma is

1. multiplied with R,

2. projected along the toroidal direction
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3. averaged over a magnetic surface

The equation is

mini
∂

∂t
〈uφR〉 = −〈Rêφ ·∇ ·Πi〉 (toroidal projection of the DIV(viscosity tensor))

+
1

c
〈j ·∇ψ〉 (radial current)

+ 〈Rêφ · F〉

where it is taken into account that

〈Rêφ · (u ·∇) u〉 ≡ 0

From the equation of balance it results that when there is a change in the
inertia term due to a change in the toroidal velocity, a radial current is
generated. This may induce an effect on the poloidal direction. Normally
this should connect the two velocities. The change in the inertial term ∂/∂t
apparently induces a polarization effect, expressed by the flowing of a current
in the plasma. This current, Hinton and Rosenbluth consider that it is a
return current and use the Ampere ’s law to balance the two currents: one of
the particles, the other is the return current and the electric field derivative to
time is negligible due to the very small value of the perpendicular dielectric.

The torque applied on the plasma in the toroidal direction is the right
hand side of the momentum equation after projection and averag-
ing

T ≡ 1

c
〈j ·∇ψ〉+ 〈Rêφ · (Fef + Fif )〉

An interesting formula

〈Rêφ · (Fef + Fif )〉 = I

〈
1

B

(
F‖ef + F‖fi

)〉

One writes the drift-kinetic equation for the fast ions.

29.1 NBI-fast ion drift-kinetic equation Hinton Rosen-
bluth

In the Ref. [8] the following equation is used to describe the fast ions from
neutral beam injection:

∂f

∂t
+
(
v‖b̂ + vd

)
·∇f = Cfast f + Sfast
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where the drift velocity of the guiding centre is

vd = −v‖b̂×∇
(v‖

Ω

)
NOTE
In the paper about the rotation due to alpha particles, the radial compo-

nent of the drift velocity is

vd ·∇ψ = Iv‖ (n̂ ·∇θ) ∂

∂θ

(v‖
Ω

)
= I

v‖
qR

∂

∂θ

(v‖
Ω

)
END
The notations are introduced

ξ =
v‖
v

(pitch angle)

= (1− λB)1/2

E =
v2

2
(kinetic energy)

µ = λE (magnetic moment invariant)

where

µ ≡ v2
⊥

2B
= λ

v2

2
→ λ ≡ 1

B

v2
⊥
v2

Bλ =
v2
⊥
v2

such that 1−Bλ =
v2
‖

v2
= ξ2

The spatial variables are
ψ, θ, φ

and the velocity space variables are

v, λ, σ (= sign of v‖ )

The fast ion collision term is

Cfastf = Cfast−ef + Cfast−if

where

Cfast−ef = νs
1

v2

∂

∂v

(
v3f
)
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Cfast−if =
2mi

mf

νs
v3
c

v3

ξ

B

∂

∂λ
λξ
∂f

∂λ

where the fast ion slowing down rate is

νs =
me

mf

Z2
f

τ e

and the electron collision time is

τ e =
16
√
π

3

nee
4 ln Λ

m2
ev

3
e

and the critical speed, at which the collisional transfer of energy from fast
ions to elecrons equals that from fast ions to background ions (see NBI)

vc =

(
3
√
π

4

me

mi

)1/3

ve

with the thermal electron velocity

ve =

√
2Te
me

In this treatment it is assumed that:

• The velocity of the fast ions is somewhere between the critical and
electron thermal velocities

vc � v � ve

this assumption is rather strange, since the injected neutrals have high
energy. Probably the slowing down process produces a hump in the dis-
tribution function, which allows the definition of a fast-ion temperature
or an average velocity, smaller than that of the electrons. This condi-
tion is probably used in the expression of the collision operators. What
ever they do, the fast ions are SLOWER than the thermal electrons.

• The fast ion density is small

nf � ne

• Slowing down to thermal ions can be neglected, the transfer of energy
from fast ions is to electrons
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• The pitch angle scattering is kept. This means that we consider the
displacements of the fast ions in the velocity space, due to collisions:
trapped, untrapped.

The following parameters are considered small and this permits the per-
turbative solution of the drift-kinetic equation: the ratio of the slowing
down rate of the fast ions to the transit time frequency: the fast ion
performs many bounces or transits in the typical time of slowing down.

νs(
vth
qR

) � 1

And the ratio of the guiding centre drift frequency to the bounce
frequency

vd
Lfast
vth
qR

� 1

The two parameters are considered of the same order of magnitude δ and
both very small, δ � 1. Note: there is no reference to a space-type small
parameter like the ratio of the banana width to the minor radius.
The perturbative expansion of f for the solution of the drift-

kinetic equation for the fast ions.

f = f−1 + f0 + f1 + ... (15)

The lowest order
b̂ ·∇f−1 = 0

This means that the lowest order function f−1 is constant along the magnetic
lines and then on the magnetic surfaces but it says nothing about the
velocity space dependence.
The zeroth order equation is

v‖b̂ ·∇f0 = −vd ·∇ψ
∂f−1

∂ψ
− ∂f−1

∂t
+ (16)

+Cfastf−1 + Sfast

We note that the scalar product with vd retains only the radial derivative
in the gradient of f−1 since it does not vary in the surface. The function f0

should be sensitive to the spacial modifications which are introduced by:

• the radial dependence of the distribution function f−1 (due to static
plasma gradients, like in density) and
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• the space changes due to the source of fast ions and due to collisions

By bounce averaging the function f0 is eliminated. The operator is

A =
1

T

∮
dθ

v‖b̂ ·∇θ
A

where the bounce time is

T =

∮
dθ

v‖b̂ ·∇θ

The limits of integrations are

−π , π for untrapped ions

and for trapped ions the integral is defined∮
dθ =

∑
σ

σ

∫ θ2

θ1

dθ

where θ1 and θ2 are the turning points.
We write the radial part of the guiding centre drift velocity

vd ·∇ψ = Iv‖b̂ ·∇θ
∂

∂θ

(v‖
Ω

)
(17)

Nota: this formula can be written

vd,r = I
v‖
qR

∂

∂θ

(v‖
Ω

)
By performing the bounce averaging the radial displacements averages to

zero (because there is no electric field and no ripple)

(vd ·∇ψ) = 0

The bounce averaged zeroth-order equation

∂f−1

∂t
= Cfastf−1 + Sfast (18)

Note. It results that the lowest order function f−1 which is constant on the
magnetic surfaces has a variation in the velocity space given by the source
of fast ions and the collisions. It will result that the source is essential for a
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stationary radial current of fast ions, even if the collisions and the limitator
do not remove ions from plasma.
Before solving the equation, we calculate the radial current of fast

ions.
The magnetic surface-averaged radial fast ion current density is

〈jfast ·∇ψ〉 = efast

〈∫
d3v vd ·∇ψ f

〉
where we have to replace f by the solution of the drift-kinetic equation for
the fast ions. Then f here should be seen as f−1 + f0 + ... .
The following surface average operator is used

〈A〉 =

∮
dθ

B·∇θA∮
dθ

B·∇θ

The equation (17) gives

〈jfast ·∇ψ〉 = efast

〈∫
d3v vd ·∇ψ f

〉
= efast

〈∫
d3v Iv‖b̂ ·∇θ

∂

∂θ

(v‖
Ω

)
f

〉
and we perform an integration by parts in θ:

efast

〈∫
d3v vd ·∇ψ f

〉
= −efastI

〈∫
d3v

(v‖
Ω

)
v‖b̂ ·∇f

〉
Now we must replace f by its expansion (??). The lowest order f−1 does not
depend on the parallel coordinate (in the surface) so it will not contribute.
The first contribution is from the term f0. This is obtained in equation (16)
where we have to insert the equation (18):

v‖b̂ ·∇f0 = −vd ·∇ψ
∂f−1

∂ψ

+Cfastf−1 − Cfastf−1 + Sfast − Sfast

The first term on the right will not contribute after surface-averageing

efastI

〈∫
d3v

(v‖
Ω

)
vd ·∇ψ

∂f−1

∂ψ

〉
= efastI

〈∫
d3v

(v‖
Ω

)
Iv‖b̂ ·∇θ

∂

∂θ

(v‖
Ω

) ∂f−1

∂ψ

〉
=

1

2
efastI

2

〈∫
d3v v‖b̂ ·∇θ

∂

∂θ

[(v‖
Ω

)2
]
∂f−1

∂ψ

〉
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The integrand is the product of a odd function of v‖ (v‖) with an even function
of v‖ (f−1). The integral on the velocity space is zero. This result is great
importance: it shows that the surface averaged radial current of the ions is
zero. If we expected to have an effective current simply due to the difference
in radial drift motions between the ions and the electrons, this result shows
clearly that it cannot exist. (A particularity of this calculation is that we
assume that the current is entirely due to the ions, i.e. the electrons are
considered tied to the magnetic lines. This changes nothing since actually
the electrons really have small radial drifts compared to ions. The total radial
current is practically the ions radial current.)
The radial current due to the difference between iond and electron drifts

exists, but only locally. When it is integrated over the magnetic surface, it
gives zero.
In conclusion we have to find somewhere else to produce an effective radial

current (i.e. whose surface average is not zero). We find:

• the collisions, and

• the source of fast ions

NOTE We have to compare this with the work of Stix 73 where the
surface averaged radial current seems to depend on the plasma rotation. If
there is no plasma rotation (in that paper’s notation, U = W = 0 then it
still remains in the expression of the “flow”the diamagnetic velocity.

The surface-averaged radial current of fast ions is

〈jfast ·∇ψ〉 = −efast
〈∫

d3v
(v‖

Ω

) [
Cfastf−1 − Cfastf−1 + Sfast − Sfast

]〉
NOTE ON THE TORQUE
We can continue along this line and use the above expression of the

surface-averaged radial fast ion current to calculate the torque exessed on
plasma at injection. It must be added the torque due to the frictional
forces in the lowest order of the distribution function, f−1:

Ffast−e + Ffast−i =

∫
d3v mfastvCfastf−1

It results from the equation (14)

T = −mfast

〈
I

B

∫
d3v v‖

[
Cfastf−1 − Sfast + Sfast

]〉
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and using the equation (18)

T = −mfast

〈
I

B

∫
d3v v‖

[
∂f−1

∂t
− Sfast

]〉
If the injection is made in trapped particle region the function f−1

will not depend on the direction of the parallel velocity so its integral is
zero. The result is then

T = mfast

〈
I

B

∫
d3v v‖Sfast

〉
(19)

=

〈
·
M φ

〉
The conclusion is that the torque exists only if there is a source

of fast ions.
Also at stationarity, the time-derivative of the distribution function is

zero and, for trapped and untrapped particles, the torque is given by
equation (19) which reflects the angular momentum conservation in
the neutral injection.
The equation (18) must be solved for

trapped ions

untrapped ions

Solution of the equation for the lowest order distribution function
of the fast ions injected into untrapped orbits, funtr−1 The equation
is (18) and gives the nostationar dist. function from the source and the
collisions averaged over the bounce. The notation funtr−1 will be simplified to
f . The bounce-averaged collision operator is

Cfastf = 2
mi

mfast

νsv
3
c

v3

1

I2 (λ)

∂

∂λ
λI1 (λ)

∂f

∂λ
+

+
νs
v2

∂

∂v

(
v3f
)

where

I1 (λ) =

∫ π

−π

dθ

B ·∇θ ξ =

∫ π

−π

rdθ

Bθ

ξ

I2 (λ) =

∫ π

−π

dθ

b̂·∇θ
1

ξ
=

∫ π

−π
rdθ

1

ξ
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where

ξ =
v‖
v

= (1− λB)1/2

The bounce-averaged source term for injection into trapped orbits is

Sfast = N (ψ) δσ,σ0Θ (t) δ (λ− λ0)
δ (v − v0)

πv2
0

where

N (ψ) =

∫ π
−π

dθ
B·∇θ

·
nfast∫ π

−π
dθ

b̂·∇θ
1
|ξ0|

The function step Θ is introduced since the injection begins at a specific
moment.

30 Plasma rotation due to alpha particles gen-
erated in fusion reactions

The origin of the rotation is the alpha birth current, a radially directed
current due to the fact that the alpha particles after creation evolveto get
their neoclassical trajectories. They have a radial drift.
The equation for the distribution function of the alpha particles

∂fα
∂t

+
(
vd + v‖n̂

)
·∇fα = Cαefα + Sα

The drift velcoity is
vd = −v‖n̂×∇

(v‖
Ω

)
where

Ωα =
eαB

mα

v‖ = v (1− λB)1/2

The energy and magnetic moment are

E =
v2

2
µ = λE
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The variables are
(v, λ, σ)

where σ is the sign of the parallel velocity.

The alpha particle - electrons collision operator is

Cαef = νs
1

v2

∂

∂v

(
v3f
)

NOTE that this is only the slowing down on electrons, while in the case of
the plasma rotation due to the NBI. END.
The source of alphas

Sα =

·
nα (ψ, t)

4πv2
0

δ (v − v0)

where v0 is the velocity of the alpha particle at the birth event. The rate of
generation of alphas is

·
nα (ψ, t) and depends on the radius and time.

31 Spontaneous toroidal rotation

31.1 Observations

It is observed in TCV as toroidal rotation :

1. counter-current for central (core) plasma in the L-mode

2. co-current for central plasma in the H-mode

3. there is a transition, fast and sharp, 100 m sec. In TCV.

See also Rice. This is the paper of Rice 2003.
The toroidal speed characterised by the Alfvenic Mach number

MA =
vϕ
cA

=
B2

µ0nemave

M ' 0.3

In the H mode, there is a scaling of the Alfvenic Mach number with the
plasma pressure is

MA ∼ βN
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In H mode the spontaneous toroidal rotation is co-current. If the current
direction is reversed, the spontaneous toroidal rotation changes too, such as
to be again co-current.
Note the electric current Ip is the motion of the ions (as direction).

Looking along the axis in the direction where the electric current flows, the
magnetic lines are helical in the clockwise direction.
The plasma motion (toroidal rotation) is the motion of ions and is in

the same direction as the electric current. Therefore the the toroidal plasma
rotation is compatible with and enhances the current. End.

Note that high toroidal rotation reduces the number of trapped ions and
reduces the ITG turbulence.

Strong correlation between toroidal velocity and plasma pressure or stored
energy.

vϕ ∼
W

Ip
or

∼ Te (0)

Ti (0)

W

Ip

vϕ ∼
1

Ip

No correlation between Mach number with normalized gyro-radius

ρ∗ = 1.02× 10−4

√
µ (AMU)

T (eV )

B (T ) a (m)

MA not correlated with ρ∗

No correlation of rotation with collisionality.

In the paper ofWare Wiley it is given the following explanation for the
toroidal rotation.
There is a substantial effect of the largeness of

ρiθ

In particular this means that there is an asymmetry of the boundary of the
region of trapped particles, in the velocity space. The asymmetry is around

v‖ = 0
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plane. (Tip of the banana orbit),
For

v‖ > 0

only a small fraction of particles are trapped because mirroring requires

mv‖ < eψ

where ψ is the small poloidal flux that can be accumulated in the region
between r = 0 and r.
For

v‖ < 0

the fraction of particles that are trapped is larger because they mirror at
larger minor radius r.
So, there is an asymmetry in the trapped particle fraction in the region

around v‖ = 0.
The large value of the poloidal Larmor radius ρiθ is implied in this asym-

metry. It is cited Goldston thesis 1977.
This asymmetry does not have an important effect on the radial fluxes.
But the asymmetry has a strong effect on the parallel-radius component

of the ion pressure tensor
Pi‖r

The trapped particles with v‖ < 0 conducting heat out also carry mo-
mentum

−mi

∣∣v‖∣∣
which is NOT cancelled by the trapped particles that have v‖ > 0. For a
given gradient of ion temperature

T ′i

the heat radially-transported flux is

qi

and the order of magnitude of the parallel-radial ion pressure tensor compo-
nent is

Pi‖r ≈
( r
R

)1/2 qi
vTh,i

Relative to the small-Larmor radius result the above result is larger by a
factor (

R

r

)1/2

Ware Wiley conclude that there is a strong parallel viscosity in the
center of the plasma.
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31.2 Flow generation by turbulence

Suggestion
"intrinsic rotation in tokamaks is an example of a “negative
viscosity phenomenon”in which an up-gradient component
of the momentum flux organizes a structured mean flow"

The equation

∂f0

∂t
+
(
v‖n̂ + vD + vE0

)
·∇f0

−n̂∗ ·∇
(
µB +

e

mi

∇φ
)
∂f0

∂v‖

= Ci (f0, f0)

where
vD ≡∇B drift

c

n̂∗ = n̂

+ρ‖n̂× [(n̂ ·∇) n̂]

Ci ≡ coulomb collision operator
Solution
shifted Maxwellian with large toroidal rotation

f0 = fSM

= n (r, θ)
1

[π (2Timi)]
3/2

exp

[
−
(
v‖ − Ui

)2
+ 2µB

(2 Ti/mi)

]

Ui = I
ωϕ
B

The ion density has poloidal variation that is modified by the presence of
the rotation Ui,

ni (r, θ) = N (r) exp

[
U2
i

2Ti/mi

− eφ̃0

Ti

]

The potential
φ0 = 〈φ0〉+ φ̃0
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the part that has poloidal variation is due to the centrifugal force, which
produces charge separation.

the equation for the turbulence-disturbed kinetic distribution

∂

∂t
δfi +

(
v‖n̂ + vD + vE0 + vE

)
·∇δfi

−n̂∗ ·∇
(
µ∇B +

e

mi

φ0 +
e

mi

φ

)
∂

∂v‖
δfi

=

(
−
{(

v‖ − Ui
)2

+ 2µB

2Ti/mi

− 3

2

}
vE ·∇ lnT

−vE ·∇ lnn (r, θ)

−
v‖ − Ui
Ti/m

vE ·∇Ui (r, θ)

+
Ui
v‖

1

Ti/mi

vE · µ∇B

−
v‖n̂ + vD
Ti/mi

·∇
(
e

mi

φ

)(
1− Ui

v‖

))
f0

+C l
i [δfi]

where
vE ≡ corresponds to the fluctuation potential

The term propotional with
∇Ui

is the Kelvin-Helmholtz instability.

31.3 The broken spectral k‖ symmetry

The brroken symmetry for
k‖ → −k‖

is essentially a broken chirlaity of the isntability.
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32 Connection between the poloidal and toroidal
rotations

The connection should allow understanding the changes that appear simul-
taneously in the two rotations, at the transition like L to H. Rice.

A possibility is in the workCoherent structures in shear flow-driven
plasma microturbulence Jovanovic Shukla Horton de Angelis.
They study coherent vortices in a plasma with parallel sheared flow

v0 (x) ‖ B0, and x ≡ radial

There is a possibility of a linear instability propagating in the y (poloidal)
direction whose energy source is the parallel velocity shear. The modes are
purely growing. The flow can support coherent dipolar vortices, obtained as
in Larichev Reznik.
To this evolution consisting of coherent vortices sustained by parallel

velocity shear, we must add a new physical factor: the inverse transformation
from a series of vortices to a sheared poloidal flow. The process can be inverse
Kelvin-Helmholtz, or the tilting instability (Shapiro Rosenbluth).
There is a paper about inverse KH, it actually is on tilting or alignement

of flow out of a collection of vortices.
There is another reference Yushmanov who citesWaelbroek (?).
The work of Yushmanov Horton shows that the Reynolds stress pro-

duced by one turbulence is able to generate rotation on the other direction.
And ParallelVelocityShearInstability_DongHorton.

The paper conversion poloidal toroidal kasuga diamond.
Phase space structures drive phase space transport through dissipation.

Bounce average kinetic equation

∂f

∂t
+ vD (E)

∂f

∂y
+

1

B
{φ, f} = 0

Gyrokinetic Poisson equation (neutrality)

eφ̃

T
− ρ2∇2

⊥
eφ̃

T
=

1

n0

2√
π

∫ ∞
0

dE
√
E δf

where the magnetic precession drift velocity depends on E,

vD (E) = vD,0
E

Ti
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ρ = ρs

(
1 + 1.6q2 1√

ε

)
The simplified equation for the toroidal and poloidal rotation of a plasma

produced by a radial current are

∂

∂t
〈vϕ〉 ≈

1

min
〈Jr〉Bθ(

1 + 1.6q2 1√
ε

)
∂

∂t
〈vθ〉 = − 1

min
〈Jr〉Bϕ

The ratio is

Mtor←pol =
∂
∂t
〈vϕ〉

∂
∂t
〈vpol〉

= −
(

1 + 1.6q2 1√
ε

)
ε0

q

The inertia factor that affect the poloidal rotation,
(

1 + 1.6q2 1√
ε

)
is the

cause for the two rotation rates to be comparable. This is against the intuition
that suggests that a common drive of rotation, the radial current Jr, is more
effi cient in driving poloidal rotation (due to the large ration Bϕ/Bθ).

33 LH transition, rotation and radial electric
field

33.1 Experimental observations

At transition there is a strong increase in the poloidal rotation.

DIIID, Burrell.
JFT.
JET? Giannella. Andrew.

33.2 Suppression of fluctuations

There are two ways:

1. drastic reduction of radial correlations of the turbulent fluctuations by
a sheared rotation;
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2. linear suppression of the instabilities, by coupling with damped modes
due to shift of the eigenmode relative to the resonant surface

3. the rise of Ti over Te makes η − ηc to change sign and the growth rate
of is suppressed (Horton Kim Kishimoto Tajima JT60)

33.2.1 Notes on linear suppression of instabilities

Pfb92 Carreras Diamond. An effect of the sheared rotation on the dissi-
pative trapped electron drift instability is:

• Doppler shift of the frequency

• asymmetry of the eigenfunction (shift away from the k ·B surface),
which makes the turning point (of ion absorbtion of Pearlstein-Berk-
radiated energy) to be inside the mode width

The shear flow stabilizes the drift wave when the shear flow term cancels
the difference between the instability drive and the magnetic shear damping

ik2
yD0 instability drive

ω∗e
ρ2s
W 2
k

magnetic shear damping

−iW
2
kΩ2s

4ρ2s
ω∗e sheared flow stabilisation

34 Impurity fluxes and plasma rotation

This part is also in plasma general impurities.
The paper on Observation of central toroidal rotation in ICRF,

Rice,..., NF 38 (1998) 75. FromObservationtoroidal rotation Alcator-C
Rice:
In the L-mode the impurities rotates toroidally in direction opposite to

the current. (Counter-current seems a state favorable for confinement of
particles, see counter-NBI).

The fact that at the H-mode we have a much better particle confine-
ment extends also over the impurity confinement. In the H-mode there is
accumulation of impurities in the center of the plasma.

Regarding the relative direction of impurity radial motion, the text Den-
sity and Omega.tex presents a hypothesis, in which it is involved the swirl.
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But the problem is not only accumulation, seen as a result of better
confinement.
It is also the flow of impurities in the radial direction.

From the paper Varenna ICRHTorque: there is a pinch of particles
during the RF heating, because a toroidal acceleration displaces the trapping
ion turning points accross the magnetic surfaces. The turning points are
displaced inwardly for heated ions. And viceversa.
The origin of displacement of the tips of banana after heating is the

conservation of J . SeeWhite Chang ICRH.

Usually the impurities have inward flux in a tokamak. This is due to their
radial gradient being created by high density at the edge and low density in
the plasma core. Another explanation, non-diffusive is given by Hayashi
JT60.
The paper NBI influence on impurity Isler ISX-B tokamak. It is

mentioned that theoretical works in neoclassics have revealed that:

1. NBI and electric current in the same direction (co-injection) can reduce
the inward diffusive flow of impurities.

2. NBI and electric current in opposite direction (counter-injection) has
the effect of accumulation of impurities in the centre.

In general, in Ohmically heated discharges: classical and neoclassical
processes lead to flux of impurities toward the centre.
However in reality the accumulation of impurities is slow or even inex-

istent. One has to use empirical anomalous diffusion coeffi cients to explain
this.
In the paper of Isler. The Argon is concentrated in the centre but only

in Deuterium and not in Hydrogen.
Conclusion for Argon:

1. the Ar accumulation in the centre is inhibited by co-injection, and

2. the Ar accumulation in the centre is enhanced by counter-injection.

The same conclusions for the iron.
the influx of Fe toward the centre is very fast in counter-injection.

Plasma begins to cool in the centre rapidly. (Note looks like the H-mode;
normally the impurities are better confined. However the effect is not due to
new atoms absorbed and confined, but to redistribution of the Fe ions.)
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By contrast, the co-injection of NBI does not lead to accumulation of Fe
in the plasma centre. (Note looks like the L-mode).
The evolution of Fe atoms is not due to supplementary input of Fe in the

discharge but to redistribution.
The change in transport, the only acceptable explanation for this behavior

of impurities, cannot be attributed to only the known transport mechanisms
(classical and neoclassical) since this would imply a flatter profile of Fe while
the experiment shows a peaked profile.
NOTE the possibility to associate this peaking of the impurity (Fe) den-

sity in the center with the density pinch induced by the vorticity pinch.

From the article: BootstrapNeo Hirshman 1996 :

1. in quiescent H-mode the absolute value of impurity velocity is neoclas-
sic

2. hot-ion mode in JET: neoclassical effect of temperature gradient screen-
ing explains the expulsion of the Carbon from the core

3. in PEP (Pellet Enhanced Performance) the same effect (temperature
gradient screening) drives impurities inward

When the impurities are introduced in plasma (seeded) as in the exper-
iments on DIII-D with Krypton, Argon, Neon, the collisionality for ions
increases. As a result there is a higher diffusion of banana in the radial
direction. This should be seen in the suplementary bootstrap current.

35 Notes

The sheared rotation suppresses the saw-teeth. Either poloidal or toroidal.
Kleva. Strauss.

The paper on Observation of central toroidal rotation in ICRF,
Rice,..., NF 38 (1998) 75. FromObservationtoroidal rotation Alcator-C
Rice:
In the L−mode the impurities rotates toroidally in direction opposite to

the current. (Counter-current seems a state favorable for confinement of
particles, see counter-NBI).

From the paper Varenna ICRHTorque: there is a pinch of particles
during the RF heating, because a toroidal acceleration displaces the trapping
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ion turning points accross the magnetic surfaces. The turning points are
displaced inwardly for heated ions. And viceversa.

The paper Generation of pasma rotation ICRH by Shaing PoP6
(1999) 1969.

The paper The mechanism for toroidal momentum input neutral
beams, Hinton Rosenbluth PL A 259 (1999) 267-275.

The paper Plasma rotation driven by alpha particles reactor,
Rosenbluth and Hinton NF 36 (1996) 55.

The paper Neoclassical Poloidal Toroidal Diamond Kim says that
only the shear of the radial electric field matters, since there is no poloidal
rotation. Here the impurity velocities are calculated and compared with
those of the bulk ions.

The paper Rotation Ohmic studies the toroidal and poloidal rotations
and the effect of the neutral-ions friction and charge-exchange which leads
to toroidal rotation damping but not quenching. One observation:
the toroidal velocity is co-current at the periphery and it is counter-current

at core. (Remember that NBI counter-injection at Shaing Houlberg is the
scanario that ensures most density confinement or density clumping). (Note
looks like the periphery is in the L-mode and the center is in the H-mode).
The counter-current toroidal flow is associated to the L-mode and there

is a transition to co-current toroidal rotation in the centre of plasma (TCV).

The LH transition: always inject power. But the power injects also vor-
ticity therefore the injection sustains the poloidal rotation against damping
by magnetic pumping and forces the stationary solution (organised) to evolve
toward a stable state. But this should be compatible with the length L of
the domain, according to our equation, for given Ωci, ρs.

See Hmode_Groebner. Beginning of an understanding.

From the paper Stability ITG sheared poloidal flows Wang Dia-
mond Rosenbluth.
Reasons for poloidal rotation

1. neoclassical drive

2. orbit loss of high energy ions
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3. flow drive by radially propagating waves with rapidly varying wave
energy flux

4. poloidally asymmetric radial particle transport (Stringer)

the steep density gradients characteristic of the H-mode confinement will
naturally suppress the ITG (since ITG is ηi−mode, where ηi = Ln

LT
and the

ηi mode is excited when the density is flat, Ln →∞).

The paperGaleev Sagdeev Liu Novakovskii Spontaneous poloidal
explains the generation of radial electric field by non-ambipolar diffusion of
particles in the ion-trapped regime. Electrons stay close to their magnetic
axis and the ions have wide deviations.
It is in plasma general viscosity and TTMP.

36 The relationship between the density and
the rotation

It is question of density peaking.
The density peaking is always associated to the higher central confine-

ment.
The pinch is higher than the neoclassical one.

There are at least two connections:

1. the ERTEL’s theorem

d

dt

(
ω + Ωci

n

)
= 0

This must be accompanied by ergodicity which converts the Lagrangian
invariants into Eulerian invariants.

2. the rotation of the plasma, in the toroidal direction has effects

(a) leads to less trapped particles. Then a particle changes from
trapped to circulating will have its virtual center of the periodic
positions moving a small amount and only once, when the trans-
formation trapped → circulating takes place. This is a current
and is a source of torque; This returns to Ertel’s theorem.

(b) ICRH makes the tips of the bananas to move towards interior of
plasma. This is a motion of the particles.
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36.1 Vortex in drift wave turbulence

The condition that a vortex exist and is stable without radiating drift waves

Vortex
(condition to exist)

must move
(either)

→


in the electron diamagnetic direction
and faster than vdia,e v > vdia,e

or
in the ion diamagnetic direction vdia,i

Short notation

Vvortex ‖ V∗,e (clockwise) and V > V∗,e or

Vvortex ‖ V∗i (counter-clockwise)

37 Vortex (clump or hole) on a background
of gradient of vorticity

The works of Lin, Schecter Dubin andMarcus.
Take Γv to denote the circulation, i.e. the integral of the velocity along a

closed curve around the vortex

clump (Γv > 0)

{
prograde (shear ‖ vorticity)
retrograde (shear anti-‖ vorticity)

move toward the maximum
of the background vorticity

hole (Γv < 0)

{
prograde (shear ‖ vorticity)
retrograde (shear anti-‖ vorticity)

move toward the minimum
of the background vorticity

See alsoMikhailovsky and a lady.

38 Sheared toroidal rotation (Rosenbluth Liu
Catto 1973)

Tentative comments on flows 1
This is also in instabilities.

In Rosenbluth Catto Liu 1973 sheared parallel it is described the
physical mechanism of the drift wave and of the KH instability when there
is a radial gradient of the parallel velocity.
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The first assumption is the existence of an electric field

E = − (ikyφ) êy − (ikzφ) êz

Due to the electric field the ions will move alng the magnetic field line B0 to
neutralize the charge. Then they will get a velocity

δuionz = − |e|
mi

ikzφδt

which is (acceleration − |e|
mi
ikzφ) x (time interval δt).

(We must understand the definitions

E = −∇φ and φ ∼ exp (ikyy + ikzz − iωt)

Ez = − ∂

∂z
φ = −ikzφ and Ey = − ∂

∂y
φ = −ikyφ

mi
δuionz
δt

= |e|Ez = − |e| ∂φ
∂z

= − |e| ikzφ

Rosenbluth Catto and Liu next discuss the other reason for a change
in velocity: the advection, by the field of the wave, of the ions having different
parallel velocities, coming from different locations on x, since U ≡ U (x). In
the case without shear we do not have such contribution.

Tentative comments on flows 2
This takes into account the fact that the polarization drift leads to a

continuous charge separation

E⊥ = −v ×B

with v the flow in the layer (like in H-mode layer) assumed without shear.
The electric field E⊥ is transversal on the plasma flow in the layer (rota-

tion) and is generated by the accumulation of charges at virtual boundaries
of the layer. Since the flow is with fixed velocity v, the drifts of the ions and
electrons transversal to the direction of plasma flow, and are produced by
qv ×B, the Lorentz force. This leads to a current that is flowing transver-
sally, in the layer. If the magnetic field pointing away from the page in the
direction of sight, the ions are moving upward and the electrons are moving
downward. This makes an accumulation of ions at the upper level and of
electrons at the lower level. The electric field that is produced by this accu-
mulation of charge is transversal on the flow and is oriented from up toward
down. The transversal electric field varies continuously in time, dE⊥/dt 6= 0
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until the force resulting from the electric field, qaE will become equal and
will cancel the Lorentz force

qaE = −qav ×B

Then a stationary state is established and no other flow of charges transver-
sally on the layer can occur. If there are no boundaries at finite distance,
the flow must continue since there is no reason to stop the accumulation of
charge at the two virtual boundaries, up and down the layer.
This electric field should be called polarization field since the piece of

material now has charges on the two opposite boundaries and is polarised.
Regarding the sign of the transversal electric field: since the ions are going

in the direction of the electric field, the electric field must be considered as
pointing upward.

The polarization flow needs a time-varying electric field to exist. This may
happen only if the boundaries are at infinity. If they are at finite distance
then the accumulated charges stops when the electric force equals the Lorentz
force and the motion of the object (or fluid) is no more accompanied by charge
displacement.

vpol =
1

ΩciB

dE⊥
dt

This polarization flow results from the guiding centre motion of the par-
ticles (which perform larmor gyromotion) and is of high order having power
2 in the magnetic field in the denominator ∼ ΩiB ∼ B2.
This polarization velocity should practically be considered only for ions

since for electrons the mass is too small.

vionpol =
1

ΩciB

dE⊥
dt

Now, the dispacement of ions due to the polarization drift must be com-
pared with the displacement of the ions due to the drift-wave oscillation of
the potential in the direction parallel with the flow.
For this we consider

ky → 0

very longwave oscillation in the flow direction (poloidal). The electric field
in the poloidal direction is

Ey = −ikyφ
and the x velocity is

vx =
Ey
B

= −ikyφ
1

B
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This velocity acting on an interval of time

δt

will produce a displacement of the ions on a distance

δx = −ikyφ
1

B
δt

and the advection of the ions in the x direction takes place on a background
of a gradient of density. This means that there will be a perturbation of the
density of ions

δnion =
dn0

dr
δx

= −ikyφ
1

B
δt
dn0

dr

Taking the interval of time δt as the inverse of the frequency of the drift wave

δt = ω−1
∗e

=

(
ky

Te
|e|B

1

n0

dn0

dr

)−1

we get

δnion = −ikyφ
1

B

dn0

dr

1

ky
Te
|e|B

1
n0

dn0
dr

= −in0
|e|φ
Te

where −i = exp
(
−iπ

2

)
is a phase factor. In Rosenbluth Catto the

modulus is taken.
We want to examine the situation where the transversal velocity vpol due

to the polarization is equal with the x velocity due to the oscillation of the
drift wave. Normally this should never happen, they have different orders of
magnitude.

39 The problem of compatibility of the two
helicities: the magnetic field lines and the
swirl of the poloidal/toroidal rotation

This compatibility is the major factor.
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Montgomery finds alignment of vorticity and magnetic field.
The association that is suggested by several properties is however

ω and j

The reversal of the direction of the toroidal rotation Rice.
The increase of the density n (t) leads at a threshold to the reversal of

toroidal rotation. The increase of n implies increase of the number of trapped
ions. This generates and changes continuously the radial current which is due
to the radial drifts of the newly trapped ions. At a certain value the radial
current induces a torque which is higher than the magnetic damping and the
poloidal rotation is set in. Then the toroidal rotation must adapt to the new
helicity.
Rice 1998: the change of the direction of the plasma current Ip relative

to the magnetic field, leads to a change of the direction of toroidal rotation,
such that

the toroidal rotation remains co-current

This is because

• the radial current of the ions is invariant (geometric) being generated
by the radial drift of ions that perform motions along the bananas, and

• the confining toroidal magnetic field, BT , with fixed direction and mag-
nitude

then,
the poloidal rotation, associated with the torque Jr × BT , is in con-

sequence invariant. When the plasma current is reversed, the helicity of
(Bθ, Btor) changes sign and the helicity of (vθ, vtor) must also change sign to
remain compatible. This means that vtor must be reversed too.
Later : however there can be a different cause
Consider the process of ionization that generates the radial current at

each event of ionization. This total current has a radial distribution of the
magnitude which is established by the profile of the source of ionization (gas
puff, pellet, etc.). The total radial current results from a substraction of two
components with opposite radial direction:

• one comes from the radial displacement for the bananas that are en-
tirely inside the magnetic surface and

• the other from the radial displacement for the bananas that are entirely
outside the magnetic surface.
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Only because there is a difference between the dimensions of the two
bananas (internal and external) a current exists.
This will be the contribution of the ionizations at that particular surface.
Now, imagine there is a change of direction of Ip. Then the helicity of

the magnetic field changes.
However the drift of an ion will remain invariant vD = 1

Ω
n̂ × µ∇B is

vertical.
The vertical drift vD now will combine with a parallel velocity v‖ of the

same ion and, since this parallel velocity has changed the helicity, there will
be another final result
any banana that previously was exterior to the magnetic surface will now

be internal
any banana that previously was interior to the magnetic surface will now

be external
If we assume that the radial profile of the rate of ionization is unchanged

then the direction of the radial current will be reversed.
If this radial current produced by ionization is combined with the poloidal

magnetic field then the direction of toroidal rotation does not change
If the radial current produced by ionization is combined with the toroidal

magnetic field then the direction of poloidal rotation will reverse.

NoteWe must clarify if the change of direction of the current takes place
from one experiment to another, or if in the same discharge. If the latter is
true then

dvtor
dt
→ dJtor

dz

and this means connection with

∂ω

∂t
= ∇‖j‖

which is a source of vorticity.

40 Contributions to a model

If we move a dielectric across a magnetic field, with a constant velocity, the
charges will separate. The state at one position is different of the state of
the state at a different position, after a distance, since more positive charges
are in the part of the space which is up compared with the quantity of the
positive charge in the same part of the space at the previous position. The
same for the negative charges in the opposite part of the space.
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This means that there is no Lorentz or Galilei transformation that can
remove the velocity of the flow, even if constant.
On the other hand there is an electric field in the first position (due

to the separation of charges) and there will be another electric field at the
next position, where the charge separation has been accentuated. The time
variation of the transversal electric field has an effect to oppose the flow of
charges that are separating across the flowing plasma. In a streamer there is
a moment where the two forces are balanced.
The time variation of the transversal electric field induces a polarization

velocity.
The current will stop and there will be no additional accumulation of

charges at the top and bottom.
The electric field is saturated.

There are similar situations in fluids and atmosphere or oceans, etc. We
mention few of them:

• works of Kuo in the physics of atmosphere. They actually start with a
simplified model consisting of a fluid rotating in the region defined by
two cylinders which are kept at constant different temperatures. Kuo
looks for the convective cell that can form as a motion of the fluid along
the axis of the cylinders, closing heat convective transport flow between
the two cylinders. This is for the meridional convection in atmosphere.

• Kuo Hadley mentions three regimes of this convective flow, one of
them being fast and substantial. Possibly similar to the H-mode state.
See the book Thermal Convection.

• Ranque-Hilsch tube. The separation of temperature and the inverse
effect. The five rolling balls.

• Rosenbluth formation of shock. The shock at θ = π in the high field
part of the equatorial plane. The equation derived in the cylindrical
geometry, for (B ·∇) A, with Christoffel symbols. Nozzle flow u2/2−
lnu.

• Ware Wiley multiple equilibria of poloidal rotation. Anisotropy of
the pressure tensor, various species. Impurities may be important since
they amplify the variation of the potential and density over the surface,
leading to stronger Stringer effect.

• Drake Guzdar Hassam article on Stringer poloidal rotation. Possible
positive instability:
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1. the poloidal rotation is driven by the same process as in Rayleigh-
Benard convection. The geometry is similar to the Kuo system.

2. the flow in poloidal direction associated to the convective cell that
has been generated between two magnetic surfaces will transport
heat along the surface in the poloidal direction, before closing the
flow toward the other surface. The heat transported poloidally will
produce a variation of the temperature on the magnetic surface.

3. the Stringer effect will be enhanced by this nonuniform distribu-
tion of temperature on the magnetic surface

4. the enhanced Stringer effect enhances in turn the flow in the
poloidal direction that defines the convection cell.

5. higher flow in the convection cell will transport even more heat
from the hot surface and will increase the variation of temperature
on the surface

• Shapiro Rosenbluth theory of tilting instability. Paper TiltInstAt-
mosphere.

• Shapiro theory for convective cell generation.

• Shapiro Diamond the rate of generation of convective cells is higher
than the ITG growth rate.

• Diamond Malkov coherent structures in zonal flows, but only ra-
dial propagation. No cenvective cell. Negative viscosity, wave kinetic
equation.

• Weiland convective cells (Sanuki)

• Shakura Sunyaev and Colgate Lovelace local maximum entropy
on accreation disks. Rossby waves.

• ADAF advection dominated accretion flux, vs. CDAF convection domi-
nated accertion flux, theory of Igumenschev and Lovelace Colgate:
analysis by Balbus showing that only the MRI Magneto Rotational
instabilit can explain accretion.

• Howard Krishnamurthi on Rayleigh Benard system. The wind
which occurs after several bifurcations is similar to the convective cell
in meridional plane at Kuo.

• Taylor Couette flow between two cylinders. Bifurcations. Book Ro-
tating Fluids. Page 356 shows the physical system.
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• velocity of propagation of perturbations on a background of rotating
fluid. The paper 0108083 Anti Centrifugal.

• symmetry breaking in Taylor Couette flows.

• the paper IntermittencyTransport DIII D where it is presented the
blobs transport. Actually they may be convective cells that close short
and also have captured current.

• field theory: the barrier that separates two states, solutions of the CHM
equation.

The physical image for this, connected with generation of convection rolls
used in Reversal Toroidal Rotation (ex Ranque Hilsch) is as follows:
we have a transient flow as a convection roll, spontaneously generated

and, soon after its creation, vanishing by dis-organization of the coherency
of the flow. It is connex on part of its circumference with part of the layer
of sheared poloidal rotation. The direction of flow on the common region is
the same. The convection rolls are sustained by the gradient of pressure, like
RB system. They transfer by friction and by Reynolds stress (on the zone
of mixing of the two fluids) momentum, sustaining the poloidal flow. There
is also the temperature that is transferred to the sheared flow, leading to
local perturbation of the temperature on the poloidal circumference and to a
Stringer effect. If these are compatible (direction of initial flow and direction
of Stringer effect) we have instability.

Later, 2012, in EPS, we propose another mechanism to generate rota-
tion:
the pre-existing poloidal rotation has the property of gradient of vorticity.

This is a background. Then any robust vortex will necessarly evolve on this
background:

1. positive vortices (clumps, i.e. the circulation Γ =

∮
v · dl) are moving

toward the maximum of the vorticity

2. negative vortices (holes, i.e. negative circulation) are evolving toward
the minimum of the vorticity

Then we have drops of vorticity adding themselves to the background
vorticity layer, where they melt down and release their vorticity as a contri-
bution to the angular momentum.
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The robust vortices are generated in the turbulent plasma, close to the
layer of rotation. They separate (positive and negative) and they move in
opposite directions.
This process is the reversed form of the generation of vortices in a rotating

Bose-Einstein condensate (BEC) See Aranson, etc.

At Padova TTG 2012 we present the effect of the random addition of
vortices on a rotating layer. The result is the Davey Stewartson system,
but in k space, whose solution (Chow) shows accumulation of the spectral
energy close to ky ≈ 0, i.e. poloidal flow.

41 Importance of the problem for Reactor
Scenarios

In Burrell 1996 it is mentioned that the terms in the equation

Er =
1

Zi |e|ni
∇pi − viθBϕ + viϕBθ

are important in various regions of the discharge:

• for the H mode, at the edge:

∇pi and viθ

• for the V H mode, in the core

viϕ

• for the core plasma, in the Internal Transport Barriers

∇pi and viϕ

Therefore scenarios of active control can be forseen:

1. NBI to modify viϕ,

2. Ion Bernstein to modify viθ.

In Burrell 1996 it is reminded that there is a problem that cannot be
understood on the basis of the E ×B shear suppression of turbulence:
it is the fact that the electron transport is not affected, as shown by

experiments. The ion transport is affected. This may be due to rotation
since the ions are involved.
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42 The effective Larmor radius

There is my text DriftWaves_rho_effective.

43 L to H mode transition

Wagner : the transition takes place when the diamagnetic velocity reaches
a certain threshold

vdia,i > Vcrit

nivdia,i =
1

miΩci

n̂×∇pi

vdia,i =
1

ni |e|BT

∣∣∣∣dpidr
∣∣∣∣

The threshold of L to H transition depends on the direction of ∇B
drift of ions:
when the direction of the drift ∇B is toward the X-point of the separatrix,

the power threshold is smaller.
This means that this direction of ion drift helps the transition.

We can make the following supposition.
The change of the direction of the toroidal rotation of plasma from counter-

current in the L-mode to co-current in the H -mode can only be explained
by an electric phenomenon.
The only electric process seems to be of the polarization type.
[LATER: there is also the torque due to ionization.]
When there is a strong poloidal rotation in the H -mode there is also an

electric field at the edge. This modifies the banana trajectories, by squeezing
them. There is less loss of trapped ions to the edge.
This means that there is a change in the regime that was before, in L-

mode.
The equilibrium in L-mode consisted of a certain continuous loss of trapped

ions at the edge with an associated flow of charged particles (electrons) to-
ward the center of the plasma to compensate for the loss of charges. This
current provides the toroidal rotation in a stationary L-mode regime.
After the transition to H -mode we have less trapped ions lost to the

border. Therefore less inflow of charges and a change in the radial current.
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NOTE
This is also in Notes Toroidal Rotation Reversal.
The change in the direction of toroidal plasma rotation from counter-

current to co-current refers almost exclusively to IONS, the massive plasma
component. The electrons, that carry most of the electric current, continue
to flow in the same direction, the direction (inverse) of the current Ip. There
is a change however in the value of the parallel current

from |e|n0

∣∣∣v(1)
i‖

∣∣∣− |e|n0ve‖

to |e|n0

(
−
∣∣∣v(2)
i‖

∣∣∣)− |e|n0ve‖

with the change of sign and of magnitude of directed velocity of the ions.
Then there is a short time a high value of

∇‖j‖

and this means that there is a pinch of vorticity in the meridional section of
plasma

d

dt
∇2
⊥φ

These relationships are local. We have however to go to integral forms of
these equations, to refer to volumes in the core or edge.
For example, in Rice PoP19 056106, 2012, the toroidal velocity of

rotation changes from

10 (km/s) to − 20 (km/s)

∆vtor = 30 (km/s)

at a density of

nthresh = 0.6× 1020
(
m−3

)
at a current Ip = 0.62 (MA)

nthresh = 1× 1020
(
m−3

)
at a current Ip = 1 (MA)

In the first case the variation of Ip due to reversal of direction of ions is

∆Ip = |e|nthresh∆vtor × Area
= 1.6× 10−19 (C)× 0.6× 1020

(
m−3

)
× 30× 103 (m/s)× Area

(
m2
)

we take

Area ≈ π
(a

2

)2

= 3.14× (0.1)2 (m2
)

= 0.03 m2
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∆Ip = 1.6× 0.6× 30× 0.03× 10−19+20+3

= 104 A

Or

∆j‖ =
∆Ip
Area

=
104

0.03
=

1

3
× 106

(
A/m2

)
and the variation is

∇‖j‖ ∼
0.3× 106 (A/m2)

2πR (m)

=
0.3× 106 (A/m2)

6× 0.67 (m)
≈ 105

(
A/m3

)
Now, the integral of the vorticity over the area gives the circulation∫∫

dA ω (r) =

∫∫
dA (∇× v) =

∮
dl · v =2πr vθ

The vorticity is

ω ∼ ∇
2
⊥φ

B
The variation of the vorticity

∆ω =

∣∣∣∣∇2
⊥φ

B

∣∣∣∣t2
t1

=
1

B

∣∣∇2
⊥φ
∣∣t2
t1

=
1

B

∆
(∣∣∇2

⊥φ
∣∣)

∆t
∆t

where (Rice)
∆t ∼ 0.05 (s)

∆Ωtot = ∆

(∫∫
dA ω (r)

)
=

∣∣∣∣∫∫ dA ω (r)

∣∣∣∣t2
t1

= |(2πrvθ)|t2t1
or

2πr [vθ (t2)− vθ (t1)]

= ∆Ωtot

=
1

B

∆
(∣∣∇2

⊥φ
∣∣)

∆t
∆t×

(
πr2
)

=
1

B
× coeff×

[(
∇‖j‖

)
×
(
πr2
)]

∆t

=
1

B
× coeff×

[(
105

(
A/m3

))
×
(
πr2
)]

∆t
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[vθ (t2)− vθ (t1)] =
1

2r

1

B
× coeff×

[
105

(
A/m3

)]
r = a/2 = 0.1 (m)

B = 5 (T )

[vθ (t2)− vθ (t1)] = coeff×
[
105

(
A/m3

)] 1

(mT )
∆t

= coeff×
[
105

(
A/m3

)] 1

(mT )
× 0.05 (s)

END

From Rice ICRF NF38 1998 p75.
The direction of the toroidal rotation changes when the direction of the

plasma current changes, remaining co-current .

What happens when the system makes the transition to the H -mode: the
density is better confined and there is an increase of the density in the central
region. This means that instead of loosing trapped ions the plasma will get
new trapped ions. This means that the radial current may reverse its sign.
To describe this the kinetic treatment for the distribution function as

developed by Rosenbluth Hinton for α-particles and for NBI must be
used. The source can be taken as a time variation of the density n (t) which
is a coeffi cient of the Maxwell distribution function. We can assume that
due to the effective closure of the loss-channel at the border in H -mode, the
density in the core increases and this is simply

·
n > 0. The radial current

should come again from the drift motion of the particles.

In the L-mode, the toroidal plasma rotation in the centre is counter-
current with a magnitude of

utor = −10 km/s

If this velocity is due to the radial current then

0 = jrBθ + F col l
tor

where the collisions have been considered as balance of the electric force (see
however Hinton Robertson neoclassical polarization). Or, if there is a
radial electric field

Er = uϕBθ − upolBT +
1

|e|ni
∂pi
∂r
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but Bθ is very small, Bθ ∼ 10−2BT = 10−2 (T ). Er = uϕBθ = 104 (m/s) ×
10−2 = 102 V/m.

When there is strong poloidal rotation two changes can be seen for the
trapped particles.

1. the banana width is reduced by the radial electric field by squeezing
(Shaing)

2. the number of trapped ions becomes small, because the fast parallel
flow makes λ ≡ v2

⊥/v
2 to become smaller and the region in v-space will

be reduced. Nycander Yankov.

The quantity that is used byNycander Yankov to describe the H mode
is the Mach-number

M =
vθBT

vthBθ

and it is found that M > 1 in the H mode.
The following experimental facts support the idea that the trapped ions

are the principal actor in the H mode physics

1. the Mach number of the poloidal rotation is greater than 1 in H mode

2. when there is poloidal rotation the trapped ions are fewer since the
parallel component of the rotation is high and reduces the chance of
ions to be trapped (increase of the parallel energy of ions)

3. the suppression of transport in the edge small region is due to the
reduction of the trapped particles, or, the transport was due to trapped
particles. It is NOT the shear that destroys the turbulence but it is
simply the reduction of the factor on which the instabilities were based:
trapped ions.

4. the idea that trapped particles are essential is supported by the reveal-
ing their role also in the density pinch. The inverse magnetic shear
in the central core of plasma makes that the trapped particles are in
a minimum of energy and therefore the transport is low: indeed the
transport is reduced with a factor of 40 in the central region. (Note
however that theRanque-Hilsch phenomenon can also claim that the
center is hot and the border is cold - which is opposite to the classical
Ranque-Hilsch - but connected with the different poloidal rotations).
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44 The ambipolar electric field in stellarators

The paper Hastings Houlberg Shaing NF25 (1985) 445.
It is question of the existence of two roots of the algebraic or differential

equation for the radial electric field in stellarators:

1. the ion root

2. the electron root

which exist in various collisional regimes.

By comparison there is a double root for the poloidal velocity due to non-
linear variation of the parallel viscosity on this parameter. Shaing, Crume,
Houlberg.

45 Proposed developments

45.1 Front propagation as Ambipolaron

Possibly a propagation of a front of shear of poloidal velocity
This is, equivalently, the propagation of a "wave" or a soliton of vorticity.

We should combine the Ambipolarons Morrison with the suppression
of the ηi modes due to sheared poloidal rotation from Horton Dong. One
should be able to derive a diffusion coeffi cient

D (E) ∼ 1

a+ bE

since the effect of sheared rotation is to reduce: the growth rate of the mode
γ and to decrease the mode width δx, then

D ∼ (δx)2

γ−1

This should first be expressed in terms of rotation and also of spatial variation
of velocities

Er =
1

|e|n∇p+ vθBT − vϕBθ

Then it may become possible to obtain a dependence of

ε⊥
∂Er
∂t
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of the fluxes Γe,i which in turn are functions of the electric field

Γe,i (E)

since they are functions of velocities and their shear; and further on the
diffusion coeffi cient for the electric field, D.

45.2 The convective cell similar to Taylor-Couette ex-
periment

The sheared toroidal rotation combined with the gradient of temperature can
be unstable to generation of streamwise rolls with axis along the magnetic
field. These rolls are actually convective cells that can be transformed into
poloidal flow with radial shear, after tilting instability.
(See also the effect of helicity inMoiseev Ruthkievich Tur Yanovskii).
The model is Taylor Cuette. See Busse conf.
The generation of rolls (convective cells with axis along magnetic field) is

followed by tilting as in Rosenbluth Shapiro and generation of the wind
in poloidal direction as in Howard Krishnamurthi.
the possiblity of tunneling directly to the wind phase.

See also Kuo athmosphere.

46 A text for EFDAWP11-TRA-04-01 (april
2011)

Title: Studies of the relative magnitude of intrinsic organization of vorticity
versus neoclassical and/or applied torque

Motivation:

• Confinement:

1. L-mode: toroidal counter-current rotation; Er is the least nega-
tive.

2. H-mode: toroidal co-current rotation. Er is deep negative. At
transition there is a fast transfer of momentum from toroidal ro-
tation to poloidal rotation.

• NBI generates rotation of plasma
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1. NBI co-current injection leads to a decrease of impurity concen-
tration in the center: their transport from the border toward the
center is reduced ; on 75 KeV ions injected in the core 38% are
lost to the wall within the first bounce period.

2. NBI counter—current injection leads to higher concentration of
Argon impurity in the center (ISX). The influx of the impurities
to the center is very fast and plasma begins to cool.

• Experimental observation: when input power increases the ITB moves
from the core toward the edge.

Hydrodynamic references:

1. a fluid evolves to vorticity organization into coherent large scale struc-
tures

2. there is evidence of vorticity concentration in 2D fluids

What should be examined:

• Recall: the effect of the rotation (and possibly of the sheared rotation)
on the instabilities, drift waves and ITG. Linear suppression of high k
spectral region, favor excitation of poloidally long-wavelength waves,
with low ω.

• A fast, massive, change of the toroidal rotation in the center of plasma
(reversing direction at the L toH transition) leads to strong Er change.
This increases the poloidal rotation term viθBϕ since there is a interval
when viϕBθ is very small. The poloidal rotation is only weakly damped
in the core, the magnetic pumping is less effi cient.

• The radial profile of the poloidal velocity should be seen as a front
which advances from the core toward the edge.

• The poloidally elongated eddies, tilted, are easily converted into rotat-
ing layer and absorbed by the advancing profile.

First mechanism to be formalised and studied: the poloidal rotation ad-
vances toward the edge as a front propagation. The model is van Saarlos:
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∂γ

∂t
=
∂2γ

∂x2
+ F (γ)

where
F (γ) = γ (γ + b) (γ − 1)

This is one of the objectives.

Elementary vortical elements have the property of self-organization into
coherent structures.
Well-known in the physics of fluids, atmosphere, MHD.
Estimated strength: spectral flow of energy in inverse cascade. Two

concrete sources of quantitative characterization:

1. conversion of drift wave turbulence into convective structures (two-field
fluid treatment)

2. generation of coherent large scale flow from helicity turbulence (statis-
tical methods)

We have developed a field theoretical description of self-organized states in
2D plasma. It shows vorticity radial distributions that are smoothly evolving
toward a cuasi-singular state on the magnetic axis. This evolution drags the
density too.
We have already a large collection of numerical results.

This is the second objective.
We will compare with the driven case (first objective).

Join to this study:

1. torque transferred to plasma by α particle creation

2. torque transferred to plasma by NBI

An important aspect from neoclassics: The balance equation for Er is
based on fluid equation where the fluid motion can be attributed to the
guiding centers. We actually need a balance equation involving the neoclas-
sical polarization current, where the velocities can be attributed to centers
resulting from bounce-averaging the ion trajectories. This will allow to dis-
cuss the loss from the plasma of the energetic ions coming from NBI. The
effective polarization dielectric constant in much larger than the classical one
(a factor (Bϕ/Bθ)

2).
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Objectives:
To find the competing mechanisms acting on poloidal rotation of plasma.
To find the way plasma converts toroidal rotation into poloidal rotation

(imposed by helicity constraint)

47 Rotation in mirrors (Horton)

This is from Horton Phys Rep 1990.
Also in Horton Liu PF27, 1984.

The ion hydrodynamic regime with an external potential.
The continuity equation

∂ni
∂t

+∇· (nivi) = 0

and the momentum balance equation

mini

(
∂vi
∂t

+ (vi ·∇) vi

)
= −Ti∇ni −∇ · πi

+eini (E + vi ×B)

−nimig

where the effect of the curvature is represented as

g = ∇U

Observation of Horton:
taking the ion temperature to be constant will eliminate the modes ηi

and ηe. This is a simplification that the model has assumed.

The momentum equation can be solved by expansion in 1/Ωci. The ion
flux is composed of

nvi =
−∇φ× n̂

B
electric drift flow

+
Ti
eiB

n̂×∇ni diamagnetic flow

+
1

eiB
n̂×

(
mini

[
∂vi
∂t

+ (vi ·∇) vi

]
+∇ · π

)
ion polarization drift flow

−mini
1

eiB
n̂× g flow induced by the gravity force ×B
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and now we expand the ion velocity taking as first order

v
(1)
i =

1

B

[
−∇

(
φ+

Ti
ei

lnni

)
× n̂

]
this approximation retains only the electric drift plus the diamagnetic drift.
This first order ion velocity is inserted in the expressions of

1

eiB
n̂×mini

d

dt
v

(1)
i ion polarization drift

1

eiB
n̂×∇ · π Finite Larmor Radius stress tensor

Horton Phys Rep 1990: the nonlinear ion continuity equation.
The equation reads

∂ni
∂t

+
−∇φ× n̂

B
·∇ni

− 1

ΩciB
∇·
[
ni
∂

∂t
∇φ+ ni

1

B

(
−∇φ× n̂

B
·∇
)
∇φ

+
Ti
eiB

(
−∇ni × n̂

B
·∇
)
∇φ
]

− 1

Ωci

(
−∇ni × n̂

B
·∇
)
U

= 0

NOTE for comparison the equation from Petviashvili Pokhotelov in
the form

∂n

∂t
+
−∇φ× n̂

B0

·∇n

−n0
1

ΩciB0

(
∂

∂t
+
−∇φ× n̂

B0

·∇⊥
)

∆⊥φ

− 1

ΩciB0

∇⊥ ·
[(

1

miΩci

(n̂×∇pi) ·∇⊥
)
∇⊥φ

]
= 0

where

pi = ion pressure
n̂×∇pi
miΩci

= n0v∗i the diamagnetic flux of ions
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and

n = n0 (x) exp

(
|e|φ
Te (x)

)
Boltzmann distribution.
We note:

• the divergence operator applied on the polarization (inertial) velocity
vp goes directly to the time derivative of the electric field∇⊥ ·(dE⊥/dt)
leading to the Laplacean of the potential φ, which is the vorticity. The
divergence is multiplied with n0 as it should since the density continuity
is ∂n/∂t+ (v ·∇)n+ n0 (∇⊥ · v) = 0.

• the term of divergence of the flux

− 1

ΩciB0

∇⊥ ·
[(

1

miΩci

(n̂×∇pi) ·∇⊥
)
∇⊥φ

]
coming from the diamagnetic advection of the electric velocity

(
n̂×∇pi
miΩci

·∇⊥
)
∇⊥φ

belongs to the same part of the density continuity, as the advection part
in the total derivative of the inertial (polarization) velocity. In other
words, in the expression of the total time derivative that is applied on
the polarization (inertial) velocity vp, the velocity of advective term is
composed of both electric and diamagnetic parts

d

dt
=

∂

∂t
+ (vE + v∗i) ·∇⊥

is applied on the electric velocity
dE⊥
dt
and so vp is obtained

then one takes the divergence div vp

• there is no gravity term at Petviashvili Pokhotelov since atHorton
there were mirrors.

End.
END.

Cylindrical geometry allows Fourier representation

φ (r, θ, t) = φ0 (r, t)

+
∑
m

φm (r) exp (imθ − iωt)
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n (r, θ, t) = n0 (r, t)

+
∑
m

nm (r) exp (imθ − iωt)

The averages
∂

∂t
〈n〉 (r, t) +

1

r

∂

∂r
〈rvrni〉 = 0

∂

∂t
〈nivθ〉+

1

r

∂

∂r
[〈rnivθvr〉] +

1

mi

〈πrθ〉 = r 〈nigθ〉

where

vr =
−∇φ× n̂

B

∣∣∣∣
r

vθ =
−∇φ× n̂

B

∣∣∣∣
θ

〈rπrθ〉 =
Ti

2Ωci

〈
rni

(
∂vr
∂r
− ∂vθ
r∂θ
− vr

r

)〉

The linear (excluding the mode coupling terms) equation for the poloidal
components with mode number m is

−i (ω −mΩ) δnim − i
m

r

1

B

∂n0

∂r
δφm

+∇·
(
δ (nivi)

(3)
m

)
= 0

We recognize

−iω δnim ← ∂

∂t
δnim

imΩ δnim ← −∇φ× n̂

B
·∇δnim where φ = φ0

=
1

B

dφ0

dr

∂

∂y
δnim =

1

B

dφ0

dr
iky δnim =

1

B

dφ0

dr
i
m

r
δnim

=

(
1

B

1

r

dφ0

dr

)
im δnim

def
= imΩ δnim

with the definition

Ω ≡ 1

B

1

r

dφ0

dr
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since
ky ≡ kθ =

m

r

The next term is diamagnetic and comes from the same term as above,
expanded in the two small perturbations δnim and δφm

−∇δφ× n̂

B
·∇ni → −

1

B

d (δφm)

dy

dn
(0)
i

dr
= − 1

B
iky (δφm)

dn
(0)
i

dr
= − 1

B
i
m

r
(δφm)

dn
(0)
i

dr

The last term is

∇·
[
δ (nivi)

(3)
m

]
= i

1

ΩciB

[
n0 (ω −mΩ− ω∗i)∇2

⊥δφm

+ (ω −mΩ (r))
dn0

dr

dδφm
dr

+
m

r
2Ω

dn0

dr
δφm

+m
dΩ

dr

dn0

dr
δφm +

m

r

d

dr

(
1

r

d

dr

(
r2Ω
))

n0δφm

+m
Ti
eiB

r
d

dr

(
1

r

dn0

dr

)
d

dr

(
δφm
r

)
−m
r
B
(
rΩ2 + g

)
δnim

+
m

r

Ti
ei

d

dr

(
1

r

d

dr

(
r2Ω
))

δnim

+m
Ti
ei
r
dΩ

dr

d

dr

(
δnim
r

)]
where

Ω ≡ 1

B

1

r

dφ0

dr

ω∗i = kθ
Ti/mi

(eiB/mi)

1

n0

dn0

dr
= kθ

ρscs
Ln

The first line
i

ΩciB
n0 (ω −mΩ− ω∗i)∇2

⊥δφm

has the following composition

n0iω∇2
⊥δφm ←∇·

(
ni
∂

∂t
∇⊥δφm

)
with ni unperturbed ni ≡ n

(0)
i
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−imΩ∇2
⊥δφm ← ∇⊥ ·

(
1

B

dφ0

dr
∇2
⊥δφm

)
∼←∇⊥ ·

(
n

(0)
i

−∇⊥φ0 × n̂

B
·∇2

⊥δφm

)
∼ ∇·

(
ni
−∇⊥φ× n̂

B
·∇2

⊥φ

)
with ni = n

(0)
i unperturbed,

∼ n
(0)
i

−∇⊥φ0 × n̂

B
· êy

∂

∂y
∇2
⊥ (δφm)

∼ n
(0)
i (−)

1

B

dφ0

dr
i
m

r
∇2
⊥ (δφm)

= −n0imΩ∇2
⊥ (δφm)

Therefore the origin of this term is

∇·
(
ni
−∇⊥φ× n̂

B
·∇2

⊥φ

)
which is the second term in the parathesis of the polarization drift term in
the main equation.
We also note that

imΩ = i
m

r

1

B

dφ0

dr
← iky

E⊥
B
← ikyv

(0)
y ← v(0)

y

∂

∂y
← v ·∇|y

Analogously there is a term of the form (the third in the paranthesis)

∇·
(
Ti
ei

−∇⊥ni × n̂

B
·∇2

⊥φ

)
and this generates

−ω∗i∇2
⊥ (δφm)

This comes from the diamagnetic velocity that convects the electric velocity
(to get the polarization - inertial velocity) followed by taking the divergence
of this flux.
We can see that

(ω −mΩ− ω∗i)
comes from

∂

∂t
+ vE (−ikθ) + v∗i (−ikθ) ∼

∂

∂t
+ (vE + v∗i) ·∇⊥ =

d

dt

which is applied on the electric velocity vE.
This is actually (the inverse of) a propagator. The propagator 1/ (ω −mΩ− ω∗i)

can have resonances. The singularity can be associated with the state where
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the wave and the particles are strongly interacting. If there are no dissi-
pative mechanisms like collisions or drifts that force the non-coincidence of
the phases of the particles and the wave, the result is Landau damping. If
there are dissipative mechanisms then the wave can grow or decay through
the interaction with the populaion of particles: absorbs energy from them or
looses the energy toward them.
What happens with the propagator when there is cancelling vE +v∗i ≈ 0?

The propagator becomes

∼ 1

iω

like in the Navier-Stokes fluid. They introduce a viscosity ν∆v which leads
to

1

iω − νk2

The other terms can also be identified.

The neutrality is
ni = ne

and this takes place at un-perturbed state

n
(0)
i = n(0)

e

From the ion continuity equation

−i (ω −mΩ) δnm −
1

B

dn0

dr
i
m

r
δφm +∇⊥ ·

[
δ (nivi)

(3)
m

]
= 0

we extract the perturbed part of the density, δnm, to be used in the neutrality
equation

δnm = − 1

(ω −mΩ)

1

B

dn0

dr

m

r
δφm +

∇⊥ ·
[
δ (nivi)

(3)
m

]
i (ω −mΩ)

We see that

−i (ω −mΩ) δnm − 1
B
dn0
dr
im
r
δφm ∇⊥ ·

[
δ (nivi)

(3)
m

]
↓ ↓ (drive) ↓(

∂
∂t

+ vE ·∇⊥
)
n (v∗i∇θ) ṽE div (vp) ṽE is the wave, δφm
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We also Note that the denominator

ω −mΩ

is a resonance and it is not a drive that can eventually be cancelled. It is
the equivalent to a propagator, coming from the inverse of a derivative along
a trajectory, represented here by d/dt.

This is for the ions.
For electrons, in mirrors there are two kind of populations: trapped and

passing. We only take one density ne which for ITG should be taken adia-
batic.
It results, after Horton

mi

eiB2
{∇⊥ · [n0 (ω −mΩ− ω∗i)∇⊥ (δφ)]

+m
dΩ

dr

d

dr

[
n0

(
1− ω∗i

ω −mΩ

)
δφ

]
+

[(
2mΩ +

m2 (ω2 + g/r)

ω −mΩ
− 1

ω −mΩ

m2

r2

Ti
eiB

d

dr

(
r2dΩ

dr

))(
1

r

dn0

dr

)
+
m

r

d

dr

(
1

r

d

dr

(
r2Ω
))

n0

+
1

r

d

dr
(n0ω∗i)

]
δφ

}
= ne

NOTE
In the absence of sheared electric velocity

Ω = const
dΩ

dr
= 0

we have

mi

eiB2
{∇⊥ · [n0 (ω −mΩ− ω∗i)∇⊥ (δφ)]

+

[(
2mΩ +

m2ω2

ω −mΩ

)(
1

r

dn0

dr

)
+

1

r

d

dr
(n0ω∗i)

]
δφ

}
= 0
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We see that the first part comes from

∂

∂t
+ vE ·∇⊥ + v∗i ·∇⊥

=
d

dt

applied on the fluctuating part of the electric velocity ṽE. Therefore it comes
from the fluctuating part of the polarization (inertial) velocity ṽp. This
part can only be a propagator and describes the trajectory advection of a
perturbation.
We must see the drive of the perturbations.
And find in this drive the possible cancellation due to the equality

vE ≈ v∗i

We can look to the terms

(2mΩ)

(
dn0

dr

)
+

d

dr
(n0ω∗i)

∼ 2mΩ

(
dn0

dr

)
+ ω∗i

dn0

dr
∼ kθ (vE + v∗i)

dn0

dr
+mΩ

dn0

dr

which, when
ω −mΩ ≈ 0

becomes the combination
ω + ωE + ω∗i

This is the drive. Then when we have

ωE + ω∗i ≈ 0

we have a problem for the drive. But in this case the the frequency of the
mode is

ω = mΩ

END.

Horton works for mirrors and for this the electron response is calculated
in a special way.
We will simply take adiabatic electrons.
NOTE that we do not retain two fields, density perturbations and po-

tential perturbations δφ. This would be equivalent to the passage from
Hasegawa-Mima to Hasegawa-Wakatani. END.
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Radial eigenmode eauation
The neutrality

ni = ne =
|e|ϕ
Te

leads to

mi

eiB
{∇⊥ · [n0 (ω −mΩ− ω∗i)∇⊥δΦ]

+m
dΩ

dr

d

dr

[
n0

(
1− ω∗i

ω −mΩ

)
δΦ

]
+

[(
2mΩ +

m2
(
ω2 + g

r

)
ω −mΩ

− m2

r2

1

ω −mΩ

Ti
eiB

d

dr

(
r2dΩ

dr

))(
1

r

dn0

dr

)
+
m

r

d

dr

(
1

r

d

dr

(
r2Ω
))

n0

+
1

r

d

dr
(n0ω∗i)

]
δΦ

}
−n0
|e| δΦ
Te

= 0

In distinction from mirrors we take a adiabatic response for the electron
density.
The equation is

∇⊥ · [n0 (ω −mΩ− ω∗i)∇⊥δΦ]

+m
dΩ

dr

d

dr

[
n0

(
1− ω∗i

ω −mΩ

)
δΦ

]
+

[(
2mΩ +m2

(
ω2 + g

r

)
ω −mΩ

)
1

r

dn0

dr

−m
r

ω∗i
ω −mΩ

d

dr

(
r2dΩ

dr

)
+
m

r
n0

d

dr

(
1

r

d

dr

(
r2Ω
))

+
1

r

d

dr
(n0ω∗i)

]
=
|e| δΦ
Te
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Horton (since it was question of mirrors) takes

δΦ (r → 0) = rm

δΦm or
δΦ

dr
(at r = b)

Horton says that the term

1

ω −mΩ

describes the interchange of vorticity elements.

ζ =
1

r

d

dr

(
r2Ω
)

=
1

r

d

dr
(rvθ)

47.0.1 Solid body rotation

In Horton the following particular case is examined

Ω = const (solid body rotation)

n0 (r) = n0 exp

(
−r

2

a2

)
g (r) = g0

r

a

The equation becomes

d2

dr2
δΦ +

(
1

r
− 2r

a2

)
dδΦ

dr
+

(
2

a2
ν − m2

r2

)
δΦ = 0

The eigenvalue is introduced by

ν

(
ω,m,Ω,

g0

a
,
Ti
Te

)
= − 1

ω −mΩ

1

ω −mΩ− ω∗,i

×
[
m2
(

Ω2 +
g0

a

)
+ (ω −mΩ) (2mΩ + ω∗i) +

|e|
Te

(ω −mΩ)

]
The solution is

δΦm,n (r) = Am

(a
r

)
exp

(
r2

a2

)
Wp,q

(
r2

a2

)
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the Whittaker function of indices

p ≡ νm,n + 1

2

q ≡ m

2

In the pedestal the profiles of the parameters have fast radial variation.
The radial electric field starts from about 0 at the some distance from

the plasma edge in SOL, increases in absolute magnitude, being negative,
on a distance of about 1 cm then rises to be again close to zero at about
1.5cm from the Last Closed Flux Surface. The pictures from Burrell 1997
in Additional LH show that the maximum of the radial electric field is
approximately at the LCFS. This should be also, in our idea, the profile of
the diamagnetic velocity ω∗i. This means that there is a strong variation of
the gradient of density, with the presence of a maximum of the gradient at a
radius inside this radial interval

d

dr
ω∗i = 0 or

d

dr
uθ = 0 or

≈ d

dr
Ω = 0

This would allow us to simplify the equation for δφm by taking approximately
dΩ/dr ≈ 0.
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