
 

Rezumat 

 
Codul numeric T3ST este instrumentul nostru preferat pentru studierea transportului turbulent în tokamakuri. 
În această fază a proiectului, codul a suferit corecții și îmbunătățiri minore, împreună cu adăugarea de noi rutine 
pentru a reprezenta cu exactitate echilibrele magnetice și coliziunile. O serie de teste analitice, numerice și 
statistice au fost efectuate pentru a-i asigura acuratețea. Folosind acest cod, am generat o bază de date de 
simulări numerice prin variarea a 22 de parametri individual în jurul unui scenariu de referință.  
Analiza complexă a aspectelor coerente din turbulență (Obiectivul A1) a relevat în statistica traiectoriilor ionilor 
în plasma turbulentă existența unor mișcări coerente ascunse. Acestea au un rol esențial în transport. O variație 
temporală slabă a potențialului generează în mod surprinzător timp lung de viață pentru mișcarea coerentă. Am 
arătat, folosind metoda modurilor test, că turbulența de drift este influențată de coerența traiectoriilor ionilor. 
În această etapă, am dezvoltat un cod care combină calcule de particule test și de moduri test într-o metodă 
iterată. Acesta este o unealtă utilă pentru înțelegerea efectelor complexe ale coerenței traiectoriilor asupra 
evoluției turbulenței. 
 
 

 
  



 

 

 

Summary 

The T3ST numerical code is our preferred tool for studying turbulent transport in tokamaks. In this 

phase of the project, the code underwent minor corrections and improvements, along with the 

addition of new routines for accurately representing magnetic equilibria and collisions. A series of 

analytical, numerical, and statistical tests have been conducted to ensure its accuracy. Using this code, 

we generated a database of numerical simulations by varying 22 parameters individually around a 

baseline scenario. The deep analysis of the coherent aspects in turbulence (Objective A1) has revealed 

hidden coherent motion in the statistics of ion trajectories in turbulent plasmas, which has an essential 

role in the transport. Unexpectedly, a slow time variation of the potential generates long lifetime of 

the coherent motion. We have also shown, using test mode approach, that ion trajectory coherence 

influences the drift turbulence. In the present stage, a code that combines test particle and test mode 

calculations in an iterated  approach was developed. It is a very useful tool for understanding the 

complex effects of trajectory coherence on turbulence evolution.  

 

  



 

 
Self-consistent code for turbulence evolution. Database of 
simulations for the analysis of the experimental results on 
fluctuations and turbulent transport. 
 

A. Self-consistent code for turbulence evolution 

 

One of the aims included in this topic is of fundamental nature and consists of a deep analysis of one 

of the main aspects of strong turbulence: the high degree of coherence. More precisely, this project 

focuses on the validation and development of predictions obtained in previous work on the existence 

of hidden coherent drifts (HDs) in the statistics of ion motion in turbulent states [1], and on their effects 

on transport [2,3]. They are based on the decorrelation trajectory method [4,5], an approximate semi-

analytical approach. Significant contributions to the understanding of ion trajectory coherence and of 

the effects on transport and turbulence evolution were obtained during the first two years of the 

project.  

The first stage (Deliverable A1) was dedicated to the identification of the hidden coherent components 

of the turbulent motion. The analysis was based on the numerical simulations of ion trajectories in a 

stochastic potentials, which were performed with the codes developed in our group [6-13]. It consists 

of deep statistical studies that determine the properties of classes of trajectories defined by the value 

of the initial potential 𝜑0 and by their topology (free and trapped). We have shown that an average 

velocity Vd superposed on the ExB drift determines important coherent effects, beside the HDs (a pair 

of average velocities perpendicular to Vd that compensate each other). Most of them are hidden in the 

sense that they do not determine average displacements or velocities, because their average over 𝜑0 

is zero. However, the dispersion of the trajectories and the transport are essentially determined by the 

coherent displacements of the free trajectories. We have also shown that a slow time variation of the 

potential has not the expected effect of attenuation of the coherent component of the motion. A 

surprising effect of enhanced coherence appears, associated to long-time memory of the potential and 

of the stochastic vorticity.  

The second stage (Deliverable A2) consists of a theoretical study of the test modes on turbulent 
plasmas in the case of drift type turbulence. The growth rates and the frequencies of the modes were 
determined as functions of the characteristics of the background turbulence. The main ingredient is 
the calculation of the propagator that is defined as an average on the stochastic ion trajectories. The 
original aspect is the use of the conditional Lagrangian statistics developed for the trajectories. It 
reveals the effects of the coherent components of the ion trajectories. The dispersion relation for the 
test modes is determined. It is much more complicated since it includes several statistical quantities 
that are taken into account for the first time. The long memory found in the statistics of trajectories 

(with characteristic time τm that is much larger than the correlation time of the Eulerian potential) 

determines growth rates and the frequencies of the modes that are intrinsically time-dependent. This 

causes an oscillating evolution of the turbulence with small frequencies of the order 1/τm. A second 

source of instability, which develops as the amplitude of the turbulence increases, was also found. It is 
determined by the HDs and other elements of the coherent motion. 

The present stage (Deliverable A3) consists of developing of a numerical code based on the iterated 
self-consistent (ISC) approach for the study of the evolution of drift turbulence. A short description of 
the ISC approach and of the new elements introduced here is first presented. It is essentially a 



 

sequence of repeated calculations of the test modes characteristics and of the test particle statistical 
quantities. Then details on these two main sections are discussed together with the development and 
improvements of the theoretical aspects.  

The iterated self-consistent (ISC) approach 

Test particle and test mode studies of turbulence start from the given statistical description of 
turbulence. They evaluate the growth rates of the modes, the diffusion coefficients and the 
characteristics of the transport as functions of the parameters of the background turbulence. They 
provide scaling and dependences of these quantities on the parameters of the turbulence models. 
Thus, the output of the test mode studies is completely different from that of the self-consistent 
studies, which determine the characteristics of the turbulence and of the transport, generated in given 
macroscopic conditions. However, we have shown [NJP] that a self-consistent evaluation of turbulence 
evolution can be constructed based on couplet studies of test particle and test modes. It is essentally 
enabled by the different characteristic times of the transport and of the evolution of the turbulence. 
The first is the decorrelation time of the stochastic potential that is produced by the drift with the 
diamagnetic velocity 𝜏∗ ≅ 1/(𝑘2𝑉∗𝑒) ≅ 1/𝜔, while the second is of the order 𝜏𝑐 ≅ 1/𝛾. As 𝛾 ≪ 𝜔,  
𝜏𝑐 ≫ 𝜏∗.  

The iterated self-consistent (ISC) approach was developed for the study of the drift turbulence in a 
model similar with the present one [NJP]. A simplified description permitted to derive analytical 
expressions for the test mode growth rates and frequencies. The coherence induced by the drift of the 
background potential was not known at that time. Also, the evaluation of the statistics of the test 
particles was performed with an approximate semi-analytical approach, the DTM. This study has 
shown that the ISC can obtain results qualitatively in agreement with those of the self-consistent 
simulations, and, most importantly, contributed to the understanding of some nonlinear processes in 
drift turbulence.  

 

Figure 1 General schema of the ISC approach and code 

 

The methodology of the ISC approach (Fig. 1) consists of repeated steps (after the initialisation of the 

background potential at a very small level with a large spectrum), which contain the following 

calculations. 



 

    •   The evaluation of the characteristics of the turbulence from the spectrum (correlation lengths 

and time, amplitude, Eulerian correlation, characteristic times, transport regime) 

    •   The calculation of the statistical characteristics of the trajectories that appear in the dispersion 

relation of the test modes (diffusion coefficients, probability of displacements, characteristics of the 

quasi-coherent structures) as functions of the turbulence spectrum – Test particle module 

    •   The calculation of the renormalized propagator (conditional averaged over trajectories) and 

evaluation of the frequencies and the growth rates of the test modes – Test mode module 

    •   The evolution of the spectrum on a small time interval is obtained using the growth rates of all 

modes. It is the starting point of a new step in this iterated method. 

The main goal in the present study is to develop a code that is able to determine the effects of the 

coherence introduced by the average velocity (drift of the potential with the diamagnetic velocity) on 

the evolution of drift turbulence and the associated transport. 

Significant improvements are introduced here. Most importantly, the test particle module is based on 

numerical simulation of the statistical ensemble of trajectories, such that the approximations of the 

DTM are eliminated. The deeper statistical analyses for both test particles and test modes yield much 

longer calculation and complex equation that have to be embedded in the code. Also, the number of 

statistical quantities that are necessary for the description of trajectory coherence is rather large. More 

details are presented below for the main modules of the code. 

Test mode module 

A significant simplification of the ion response function was introduced, which leads to a smaller 

number of statistical quantities in the dispersion relation. 

The propagators in the ion response to test modes on turbulent plasmas  
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depend on trajectories through the function 𝑀(𝜏)  
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The compressibility term depends on the vorticity of the backward turbulence 𝜁(𝐱, 𝑡) = Δ𝜙𝑏(𝐱, 𝑡) 

∫  
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𝜏
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Since the Lagrangian potential and vorticity have similar statistical properties, we introduce the 
combined stochastic function, which represents the gain of potential vorticity 

ϑ(τ) = 𝜑(𝜏) − 𝜑(0) − (𝜁(𝜏) − 𝜁(0))                                                  (5) 

In terms of dimensionless quantities, Eq. (3) is  



 

𝑀(𝜏, 𝑡) ≡ exp [
𝑒Φ

𝑇𝑒
ϑ(τ) + 𝑖𝐤 ⋅ (𝐱(𝜏) − 𝐱)].                                                          (6) 

The average of this stochastic function contains 8 statistical quantities (with 11 in the previous version).  

The potential vorticity has a coherent component with long time memory. It is proportional to -φ⁰ at 

large time and increases slowly in time as seen in Fig. 2. The conditioned average of ϑ(τ) is 

approximated by 

〈ϑ(𝜏)〉𝜑0 = −𝜑0 (1 +
1

𝜆1
2 +

1

𝜆2
2) (1 − 𝐹𝑚(𝜏)),                                                              (7) 

where 𝐹𝑚 is the memory function (with 𝜏𝑚 the memory characteristic time) 

𝐹𝑚(𝜏) = exp (−
𝜏

𝜏𝑚
).                                                                           (8) 

 

Figure 2 The conditioned average of the potential vorticity represented as function of time for several values of 

𝜑0 (left panel) and as function of 𝜑0 for the time moments 20, 40, …  (right panel) 

 

Figure 3 The conditional correlation of the displacements with the potential vorticity as function of time for the 

radial (left panel) and poloidal directions (right panel) 

 

The correlations of ϑ(T) with the displacements are shown in Fig. 3. In the radial direction (left panel) 

it is positive with weak dependence on the initial potential, and saturates at a value of the order 4.5 in 

the case presented. The correlation with the poloidal displacements is anti-symmetric in φ⁰ at any 

time, and it has the sign of φ⁰, as seen in Fig. 3 (right panel). It has a slow time evolution with a 



 

maximum around T=100. All these quantities evolve at the large time scale of the memory. 

The dispersion relation  
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yields in dimensionless quantities 
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where 𝐼i and 𝐼𝑖
∆ are parts of the propagators. They are rather complicated functions of the 8 

statistical quantities discussed above and in the previous report. 

The solution has to be numerically obtained. This permits developments of the theoretical estimates 

and also eliminates the simplifications necessary in analytical solutions. 

Test particle module 

The test particle module is based on the codes developed in our group. The basic code for test particles 

in incompressible 2-dimensional velocity fields is used here.  

The statistical quantities conditioned by the initial potential are determined. The domain of the 

potential 𝜑0 is divided in cells and the trajectories are attributed to each cell. The conditional averages 

of the displacements are determined for each cell. These are the averages and the mean square 

displacements 

 〈𝑥1(𝑡) − 𝑥1〉𝜑0 , 〈𝑥2(𝑡) − 𝑥2〉𝜑0 , 〈𝛿𝑥1
2(𝑡)〉𝜑0 , 〈𝛿𝑥2

2(𝑡)〉𝜑0 , 〈𝛿𝑥1(𝑡) 𝛿𝑥2(𝑡)〉𝜑0 , 

and the average of the potential vorticity and its correlation with the displacements 

〈ϑ(t)〉𝜑0 ,          〈δϑ(t)(𝑥1(𝑡) − 𝑥1)〉𝜑0 , 〈δϑ(t)(𝑥2(𝑡) − 𝑥2)〉𝜑0 . 

The output of the test particle module consists, in principle, of 8  two-dimensional matrices that 

represent these statistical quantities as functions of 𝜑0 and t. A strong simplification consists in 

deriving simple analytical approximations from typical cases. Then, during the evolution of the 

spectrum of the turbulence, at each time step, the parameters of the approximations are determined 

by fitting procedures. This allows analytic estimations of the integrals over 𝜑0 and t in the propagators, 

which provide the dispersion relation (10). In particular, the characteristic time of memory 𝜏𝑚 can be 

determined 

We underline that the long memory of the statistics of test particles leads to time dependent 

coefficients in the dispersion relation, which determine time variation of the growth rates and 

frequencies of the modes at the scale of 𝜏𝑚.  

Evolution of the spectrum 



 

First results were obtained. They have to be analyzed and verified before a systematic study of the 

effects of the coherent ion motion on the evolution of turbulence. 

We present here two examples:  

- Run 1 is for a small density gradient, which determine a weak drive of the unstable drift modes. 

The ion trajectories are dominated by the random aspects and the coherence is weak. 

- Run 2 is for a larger density gradient, which generates drift turbulence with significantly larger 

amplitude of the turbulence. The coherent components of ion motion are significant, but not 

dominant.    

The evolution of the turbulence spectra in these runs is shown in Fig. 4. A smooth time dependence is 

observed in the Run 1 (upper panels), while the Run 2 is characterized by transitory acceleration and 

change of the shape of spectrum. This type of differences also appear in the Eulerian correlation of 

the potential (Fig. 5).  

The evolution of the parameters of the turbulence is presented in Fig 6, where the upper panels are 

for Run 1 and the lower panels for Run 2. In the first case the fast initial growth of the amplitude of 

the turbulence is strongly reduced when the parameter 𝐾∗ reaches the value 1, which corresponds to 

the lower limit of the nonlinear regime 𝐾∗ > 1 (left panel). A faster decay of the dominant wave number and 

of the width of the spectrum appears from this moment t=12 (right panel). In the Run 2, the amplitude of the 

turbulence reaches much larger values, which correspond to 𝐾∗ ≫ 1, the nonlinear effects are stronger, and 

zonal flows are generated as a result of the hidden drifts.  

The development of the spectrum of the zonal flows is shown in Fig. 7, left panel. It appears to be a 

complex process that is far from the smooth evolution in the quasilinear conditions (Fig. 4, upper 

panels). The generation of zonal flows appear to be associated to ion trapping in potential cells that 

are elongated in the radial direction (right panel).  

A supplementary insight of the complex processes that appear in the Run 2 is suggested by Fig. 8, 

which shows that the turbulence oscillates behavior the linear and nonlinear regimes.  

 

 



 

 

Fig. 4. Evolution of the turbulence spectra for the radial (left column) and poloidal (right column) wave 

numbers. Upper panels are for Run 1 and lower panels for Run 2. 

 

 

Figure 5. The Eulerian correlation of the potential along the poloidal direction  

obtained in Run 1 (left panel) and in Run 2 (right panel). 

 

 

 



 

 

Figure 6. The upper panels are for Run 1 and the lower ones for Run 2.   

Left: Time evolution of the amplitude of the turbulence 𝛷2 (blue) and of the parameter 𝐾∗ (red).  

Right: The dominant wave number 𝑘2,0 (black), the widths of the spectrum ∆𝑘1 (dashed blue) and ∆𝑘2 (blue).       

Also shown are the characteristics of the zonal flow modes: the amplitude (red line, lower, left panel) and the 

dominant wave number 𝑘1,𝑧𝑓𝑚 (red line, lower, right panel) 

 

 

Figure 7 Left: The spectrum of the zonal flows. Right: the characteristics of the trapping process, the fraction of 

trapped ions (black), the size of the island of closed contour lines of the potential in the radial (blue) and 

poloidal (red) directions. 

 

 

Figure 8. The time evolution of the parameter 𝐾∗′ (blue) and of the radial correlation length 𝜆1 (red) show  

oscillations between the linear ( 𝐾∗
′ < 𝜆1 ) and the nonlinear ( 𝐾∗

′ > 𝜆1 ) regimes. 

 



 

 

B. Database of simulations for the analysis of the experimental results on fluctuations and 

turbulent transport. 

 

New improvements to the numerical code for turbulent transport 

The existing code dedicated to numerical investigations of turbulent transport is named "T3ST". In this 

stage of the project, the code has been upgraded to include several new capabilities. The two most 

significant enhancements in the latest version are: the inclusion of realistic magnetic equilibria and 

realistic collisions. 

The realistic magnetic equilibrium surpasses the previous circular model implementation and 

accurately represents magnetic quantities as follows. The total magnetic field is considered 

axisymmetric in a covariant and contravariant representation:  

𝑩 = 𝐹(𝜓)∇𝜁 + ∇𝜁 × ∇𝜓 

Where 𝐹(𝜓) is an arbitrary function of the poloidal flux function 𝜓. The latter is axysymetrical 𝜓 ≡

𝜓(𝑅, 𝑍) ≡ 𝜓(𝑟, 𝜃). The standard cylindrical and toroidal coordinate systems, (𝑅, 𝑍, 𝜁), (𝑟, 𝜃, 𝜁) have 

been considered. Both coordinate systems are right-handed and orthogonal. The poloidal function 

𝜓(𝑅, 𝑍) = 𝜓(𝑟, 𝜃) is a solution of the Grad-Shafranov equation:  

𝜕2𝜓

𝜕𝑅2
−

1

𝑅

𝜕𝜓

𝜕𝑅
+

𝜕2𝜓

𝜕𝑍2 
= −𝜇0𝑅2

𝑑𝑝

𝑑𝜓
−

1

2

𝑑𝐹2

𝑑𝜓
. 

Note that, in the neoclassical theory, both the pressure 𝑝(𝜓) and 𝐹(𝜓) are functions of poloidal flux. 

Consequently, one can define the function  

𝑞𝜃 =
𝐵 ⋅ ∇𝜁

𝐵 ⋅ ∇𝜃
 

The safety factor is 

�̅�(𝜓) =
1

2𝜋
∫ 𝑞𝜃(𝜓, 𝜃)𝑑𝜃

2𝜋

0

 

And the generalized poloidal angle: 

𝜕𝜒

𝜕𝜃
=

𝑞𝜃(𝜓, 𝜃)

�̅�(𝜓)
. 

As a result of these definitions, all magnetic quantities related to MHD equilibrium, which appear 

explicitly in the equations of motion of gyro-centers, can be expressed in terms of 𝜓(𝑅, 𝑍) and its 

derivatives. This allows us to use realistic magnetic equilibrium data from tokamak experiments, 

provided in the so-called G_EQDSK files. Combined with an interpolation approach, this leads to an 

accurate evaluation of all magnetic drifts. Moreover, field-aligned coordinates (𝑥, 𝑦, 𝑧) used for 

turbulence representation are also readily computable as follows: 

𝑥 = 𝐶𝑥(𝜓 − 𝜓0) 



 

𝑦 = 𝐶𝑦(𝜁 − �̅�𝜒) 

𝑧 = 𝐶𝑧𝜒 

The turbulent fields are computed as:  

𝜙(𝒓, 𝑡) = 𝜙(𝑥, 𝑦, 𝑧, 𝑡) = ∫ 𝑑𝒌𝟑 �̃�(𝒌)𝑒𝑖(𝒌𝒓−𝜔𝒌𝑡) = ∫ 𝑑𝒌𝟑 𝑆
1
2(𝒌)𝜁(𝒌)𝑒𝑖(𝒌𝒓−𝜔𝒌𝑡) 

Where, 𝑉⋆ = ∇𝑇𝑖 ×
𝑏

𝑞𝑛𝐵
,  𝑘⊥

2 = (𝒌 − 𝒃(𝒌 ⋅ 𝒃))
2

 and  

𝜔𝑘 =
𝑇𝑖

𝑇𝑒

𝒌 ⋅ 𝑽⋆

1 + 𝜌𝑠
2𝑘⊥

2  

 

Without detailing the numerical implementation, we extract here in Fig 1 two snapshots of the 

routines dedicated to the interpolation of G_EQDSK data to particle positions (EFITsa) and to the 

evaluation of magnetic drift quantities (Equlibrium_magn).  

 

 

Fig.1 Snapshots of EFITsa and Equlibrium_magn Fortran routines dedicated to the evaluation of 

magnetic quantities along test-particle positions using (or not) G_EQDSK reconstructions of equilibria. 

Regarding the implementation of collisions, we have used a theoretical description of how collisions 

impact the individual gyrocenters in a Monte-Carlo framework. While the equations involved are quite 

intricate, we offer here only a snapshot of the Fortran routine dedicated to collisions (Fig. 2). 



 

 

Fig.2. Snapshot of the “Collisions” routine dedicated to the evaluation of test-particle motion due to 

collisions with the ionic background 

 

 

Numerical tests of the code 

One of the fundamental features of particle dynamics in tokamak environments is that, in the absence 

of collisions or turbulence, trajectories are closed, either as circulating or as banana orbits. Therefore, 

this topological behaviour should be observed for individual particles in our numerical simulations and 

serves as a minimal test for the correct implementation of the neoclassical part of drifts.  

In Fig. 3, we plot the results of two distinct trajectories obtained in an MHD equilibrium corresponding 

to a numerical reconstruction of the WEST tokamak. As shown, we recover both behaviours of 

circulating (blue) and banana (orange) paths.  



 

 

Fig.3. Typical circulating (blue) and trapped (banana, orange) neoclassical trajectories in a realistic 

MHD equilibrium corresponding to the WEST tokamak. 

 

Unfortunately, this is merely a qualitative test and does not constitute a complete verification of our 

code. For comprehensive validation, we must conduct quantitative tests. The fact that particle 

trajectories have such closed, special topologies is intimately related to the conservation of certain 

invariants of motion, one of which is energy. 

𝐻 =
𝑚𝑣∥

2

2
−

𝑚𝑢2

2
+ 𝜇𝐵 + 𝑞Φ 

For this reason, we test the code's ability to conserve the Hamiltonian for pure neoclassical 

trajectories. We find that the RK4 algorithm, in conjunction with appropriate time steps, offers a high 

degree of conservation. It is important to note that collisions were set to zero to preserve the 

Hamiltonian. 

The results are shown in Fig. 4, displaying both the evolution of multiple relative energies and the 

numerical dispersion of the invariant at the end of the computation time. We conclude that 

conservation is very well reproduced, with errors lying in the range of approximately 0.1 ‰. 

 

Fig.4. a) Time evolution of the energy 𝐻(𝑡) relative to its initial value 𝐻(𝑡 = 0)  for multiple 

neoclassical trajectories. b) Distribution of relative energies at the end of computing time for a 

simulation of neoclassical dynamics. Note that all results are in the absence of collisions. 



 

 

Adding turbulence into the picture leads to perturbed trajectories that, in general, no longer conserve 

energy. However, there is a special case where this invariance is still maintained: frozen turbulence. 

While this is an idealization that is not particularly relevant to tokamak plasmas, it serves as a robust 

test of the code. Testing the conservation of a quantity in both pure neoclassical regimes and in 

neoclassical plus turbulence regimes offers an effective method to isolate possible deviations from the 

desired results. 

 

Fig.3. Typical circulating (blue) neoclassical trajectories and the same trajectory in the presence of 

turbulence (orange). The circular model was used to reduce interpolation errors. 

 

 

Fig.6. a) Time evolution of the energy 𝐻(𝑡) relative to its initial value 𝐻(𝑡 = 0)  for multiple turbulent 

trajectories. b) Distribution of relative energies at the end of computing time for a simulation of 

turbulent dynamics. Note that all results are in the absence of collisions. 

 

Numerical results, analogous to the pure neoclassical motion, can be seen in Figs. 5 and 6. Fig. 5 depicts 

the effect of turbulence (orange) on a purely circulating trajectory (blue), leading to the trapping effect. 

In Fig. 6, we observe how propagating particles in frozen turbulence induce small numerical oscillations 

in the relative energy, which are almost two orders of magnitude larger than in the neoclassical case. 



 

However, these oscillations still successfully reproduce invariants, as the energy error fluctuation 

remains around ∼0.1%. 

A much more complex test for the code involves quantities that are not solely related to individual 

trajectories but rather to global transport, specifically the transport coefficients. Unfortunately, 

analytical data in this regard is quite scarce. Nonetheless, we rely on one of the oldest results of 

neoclassical theory: the classification of transport regimes. Heuristic arguments, supported by drift-

kinetic equations, show that neoclassical transport—resulting from collisions combined with 

magnetically confined motion—leads to diffusive transport. The associated coefficient strongly 

depends on a scaled version of the collisional frequency,  𝜈⋆ = 𝜈𝑞𝑅/𝑣𝑡ℎ. There are three distinct 

regimes: banana, plateau, and the Pfirsch-Schlüter regime. In the banana regime (𝜈⋆ ≪ 1), diffusion 

follows 𝐷 ∝ 𝜖3/2𝜈⋆. In the plateau regime (𝜈⋆ ∼ 1) , diffusion is approximately constant 𝐷 ≈ 𝑐𝑜𝑛𝑠𝑡. 

In the Pfirsch-Schlüter regime (𝜈⋆ ≫ 1), diffusion again follows 𝐷 ∝ 𝜖3/2𝜈⋆. Our numerical simulations 

successfully reproduce this behavior, as shown in Fig. 7. To obtain these results, we artificially increased 

the collision rate 𝜈 experienced by ions to cover a large range of parametric values. It is worth noting 

that the Pfirsch-Schlüter regime is rarely relevant to tokamak discharges. 

 

Fig 7. Banana, plateau and the Pfirsch-Schlüter regime reproduced sucesfully by our numerical 

simulations for the neoclassical transport (magnetic drifts + collisions). 

 

 

The parametric space of the database 

One of the objectives of the present project is to construct a database of simulations of transport. The 

purpose of this task is to quantify the relation between the characteristics of turbulent fluctuations 

and the associated transport. Furthermore, it is expected that, in the near future, such databases could 

be validated against theoretical and experimental results and used as means to diagnose both the 

transport and the turbulence in tokamak plasmas.  



 

The full set of parameters that characterize a single simulations are 22 in number and can be seen in 

Table. 1. They cover both plasma equilibrium quantities (temperatures 𝑇𝑖, 𝑇𝑒, magnetic fields 

𝐵0, geometrical properties of the tokamak 𝑅0, 𝑎, density 𝑛0, etc.) as well as particle properties (mass, 

𝑚, charge 𝑞, phase space distribution, temperature 𝑇) and turbulent features (amplitude Φ, 

correlation lengths 𝜆𝑥, 𝜆𝑦, 𝜆𝑧, 𝜏𝑐, 𝑘0
𝑖 , 𝑘0

𝑒). 

 

Parameter Interpretation Reference value Interval of variation 

𝑇𝑖 Ion temperature 1 𝑘𝑒𝑉 [0.1 − 4]𝑘𝑒𝑉 

𝑇𝑒 Electron temperature 1 𝑘𝑒𝑉 [0.1 − 4]𝑘𝑒𝑉 

𝐵0 Magnetic field value near axis 3.7 𝑇 [2 − 4]𝑇 

𝑅0 Large radius 2.5 𝑚 [2 − 4]𝑚 

𝑎 Small radius 0.5 𝑚 [0.2 − 1]𝑚 

𝑛0 Plasma density 2 × 1019𝑚−3 − 

𝐴 Mass number 1 [1 − 10] 

𝑍 Charge number 1 [1 − 10] 

𝑇 Species temperature 1 𝑇𝑖 [0 − 4]𝑇𝑖 

𝑞
1
 Safety factor core value 1.5 [0.5 − 2] 

𝑞
3
 Safety factor shear parameter 3.5 [1 − 10] 

𝑟0 Radial position 0.2 [0.05 − 0.35] 

Ω𝑡 Toroidal rotation 0 [0 − 20]𝑘𝐻𝑧 

Ω𝑝 Poloidal rotation 0 − 

𝑍𝑒𝑓𝑓 Effective ion charge 1 − 

𝐴𝑒𝑓𝑓 Effective ion mass 1 − 

𝑃 Local plasma pressure 40 𝑘𝑃𝑎 [10 − 100]𝑘𝑃𝑎 

𝑃′(𝜓) Local plasma pressure gradient −7 × 104𝑃𝑎/(𝑇𝑚2) −[10 − 100]𝑘𝑃𝑎/𝑚2𝑇 

Φ Effective, local, turbulence amp.  1% [0 − 5]% 

𝜆𝑥 Radial correlation lenght 5𝜌𝑖 [1 − 10]𝜌
𝑖
 

𝜆𝑦 Poloidal correlation lenght 5𝜌𝑖 [1 − 10]𝜌
𝑖
 

𝜆𝑧 Parallel correlation lenght 1𝑅0 [0.2 − 2]𝑅0 

τc Correlation time  ∞ [10 − 100]𝑅0/𝑣𝑡ℎ 

𝑘0
𝑖  Dominant ITG mode no. 0.1 [0.05 − 0.5]𝜌

𝑖
−1 

𝑘0
𝑒  Dominant TEM mode no. 0.1 [0.05 − 0.5]𝜌

𝑖
−1 

 



 

Table 1. Free parameters of the model to be varied individually within the database. On the first column 

is the denomination of each parameter, on the second its interpretation, on the third the baseline value 

while on the last, its interval of variation. 

Clearly, our space is 22-dimensional. Even attempting 2 discrete points along each dimension results 

in 222 ≈ 107 simulations, far exceeding our current computational capabilities. Moreover, employing 

just 2 points per dimension is insufficient; a minimum of 10 points per direction is necessary to achieve 

a baseline level of accuracy in our database. Given the impracticality of fully populating the database, 

we vary one parameter at a time around the baseline scenario to discern qualitative trends in transport 

relative to each specific parameter. Following this approach, we conducted 2200 simulations (100 per 

parameter), and the results are presented graphically (see Fig. 8). 



 



 



 



 



 

Fig. 8.  Transport coefficients 𝑉𝑥[𝑚/𝑠], 𝐷𝑥[𝑚2/𝑠] vs each free parameter of the database varied around 

the baseline configuration (see Table 1). 

 

Similar results were obtained in an earlier stage of the project. However, the current results are 

qualitatively more accurate due to enhancements in the numerical T3ST code, many of which are 

minor and not detailed here. Additionally, the size of the database has been expanded. Regarding the 

validity of our results, it is important to note that the transport coefficients exhibit qualitatively correct 

trends, consistent with known analytical and numerical results from previous studies and the 

literature. 
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Conclusion 

We present here the extensive work undertaken to enhance our numerical capabilities. The T3ST code 

has been upgraded through the correction of minor issues and the addition of a new routine capable 

of fully and accurately integrating the collisional operators and realistic magnetic equilibria—both of 

which are critical components of ion dynamics. A series of analytical, numerical, and qualitative tests 

have been conducted on the new version of the code to verify the correctness of the results at both 

individual and statistical levels. Applied to a range of parameter configurations, the code has been 

used to perform numerical simulations and generate a database of results related to turbulent 

transport. This database will serve as a foundation for future work, including the validation of the code 

and its integration with machine learning tools, such as neural networks. 

A numerical code was developed for connecting the test mode and the test particle investigations of 

the turbulence and transport. Both these analyses have the characteristics of the turbulence as input 

information. They determine the statistics of ion trajectories, the growth rates and the frequencies of 

the test modes as function of the input description of the turbulence. These studies were combined 

in an iterated approach, which is able to provide self-consistent results. It can be applied only for simple 

confining geometries, but complex nonlinear effects can be analyzed. We conclude that the code is a 

very useful tool for understanding the complex effects of trajectory coherence. 

 


