
 

Rezumat 

 
 

Problema modelarii matematice a relatiei dintre transportul turbulent si parametrii plasmei a fost 

abordata cu ajutorul unor metode de tip regresie pe o baza de date de dimensiuni medii obtinute cu 

ajutorul unui cod numeric pentru transport. Acesta din urma imita dinamica particulelor in medii tokamak 

turbulente cu parametrii relevanti pentru descarcarile de tip AUG. Coeficientii de transport rezultati au 

fost aproximati cu expresii analitice care sunt capabile sa reproduca dependente individuale cu parametrii 

plasmei. S-a demonstrat ca un model simplu de regresie globala prezice transportul cu un nivel acceptabil 

de eroare. Exemple minime de tehnici de învațare automată bazate pe retelele neuronale feed-forward si 

bayesiene au fost, de asemenea, dezvoltate in vederea etapei viitoare a proiectului. 

Au fost studiate moduri de test pe plasma turbulenta luand in considerare proprietatile speciale ale 

statisticii traiectoriilor ionilor (identificate in prima etapa a proiectului): nivel ridicat de coerenta 

(reprezentat prim mișcari si corelatii ascunse) si  memorie de timp lung a conditiilor initiale. Am gasit o a 

doua sursa de instabilitate determinata de componentele coerente ale mișcarii, care apare in regimul 

neliniar al turbulentei. Ea reprezinta un nou mecanism de generare a modurilor de curgere. Am aratat ca 

ratele de crestere ale modurilor de test sunt functii de timp care determina o comportare oscilatorie a 

caracteristicilor turbulentei cu frecvente caracteristice foarte mici de ordinul 1/τm , unde τm este timpul 

de memorie. 

 

 
 
  



 

 

Summary 

 

We have tackled the problem of modeling the mathematical relationship between turbulent transport 

and plasma parameters using regression approaches on a medium-sized database obtained with the aid 

of a numerical code for transport. The latter mimics the dynamics of particles in turbulent tokamak 

environments as described by parameters relevant to AUG-like discharges. The resulting transport 

coefficients were fitted with analytical expressions that are able to reproduce individual dependencies 

with the plasma parameters. It was shown that a simple global regression model predicts the transport 

with a fair level of agreement. Minimal examples of machine learning techniques related to feed-forward 

and Bayesian neural networks have also been developed in view of the future stage of the project. 

Test modes on turbulent plasmas were studied taking in to account the special properties of the statistics 

of ion trajectories (found in the first stage of the project): high level of coherence (represented by hidden 

motion and correlations) and long memory. We have found a second source of instability determined by 

the coherent components of the motion, which appears in the nonlinear regime. It represents a new 

mechanism of generation of zonal flow modes. We have shown that the growth rates of the test modes 

are functions of time, which determine oscillatory behavior of the characteristics of the background 

turbulence with very small characteristic frequencies of the order 1/τm , where τm is the memory time.   
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Effects of hidden coherent motion on the growth rates of turbulence. 

 
The evolution of turbulence in magnetically confined plasmas is a complex problem that is not completely 

understood in spite of a huge amount of work (see [1] and the references there in). Low-frequency drift 

type turbulence, which has a significant influence on plasma confinement, is extensively studied especially 

in connection with fusion research (see e.g. [2]-[5]). 

One of the aims of the project is of fundamental nature and is planned to bring a contribution to a main 

aspect of strong turbulence, the coherence [1]. More precisely this work (included in the Objective A1) 

intents to determine and to understand the influence of the quasi-coherent components of the stochastic 

motion on the evolution of turbulence. 

A detailed study of tracer statistics in 2-dimensional incompressible turbulence focused on the analysis of 

the quasicoherent components of motion was performed in 2022. We have found that the statistical 

properties are completely different for the trapped (closed, periodic) trajectories compared to the free 

trajectories that reach large distances. Also, the existence of an average velocity V_d determines strong 

structural changes by generating coherence in the Lagrangian velocity. We have shown that a slow time 

variation has not the expected effect of attenuation of the coherent component of the motion, but it 

determines long-time memory and increases the life of the hidden ordered elements. 

The work scheduled for this year (deliverable A2) consists of a theoretical study of the test modes on 

turbulent plasmas in the case of drift type turbulence. The growth rates and the frequencies of the modes 

are determined as functions of the characteristics of the background turbulence. The effects of the quasi-

coherent components of the ion trajectories are analyzed. 

 

Test modes on turbulent plasmas 

 

Drift waves and instabilities are low-frequency modes generated in non-uniform magnetically 

confined plasmas. Since the aim of this work is to understand the effects of trapping on the evolution of 

turbulence, we consider a simple confining geometry, the plane plasma slab, in which the magnetic field 

is straight and uniform. Plasma has low 𝛽, which means that the perturbation of the magnetic field is 

negligible (electrostatic approximation). 

The magnetic field is along 𝑧 axis (𝐁 = 𝐵𝐞𝑧) and plasma is non-uniform in the radial direction taken 

along 𝑥 axis. For simplicity, the equilibrium temperatures are uniform and only the density 𝑛0(𝑥) is 𝑥-

dependent. The characteristic length of density variation 𝐿𝑛 = 𝑛0/|𝑑𝑛0/𝑑𝑥| is much larger than the wave 

length of the drift modes. 



 

We start from the basic description of this (universal) drift turbulence provided by the drift kinetic 

equation in the collisionless limit. Drift modes are represented by wave type potential 𝛿𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 

𝜙𝑘𝜔exp⁡(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡), where 𝑘𝑖 are the components of the wave number and 𝜔 is the 

frequency (with imaginary part 𝛾). They have 

𝑘𝑧 ≪ 𝑘𝑥 , 𝑘𝑦, 𝑣𝑇𝑖 ≪ 𝜔/|𝑘𝑧| ≪ 𝑣𝑇𝑒 

where 𝑣𝑇𝑒 , 𝑣𝑇𝑖  are the thermal velocities of electrons and ions. The solution of the dispersion relation, 

which is the quasineutrality condition, is (see [27]) 

𝜔⁡=
𝑘𝑦𝑉∗𝑒

1 + 𝑘⊥
2𝜌𝑠

2

𝛾⁡= √
𝜋

2

𝜔(𝑘𝑦𝑉∗𝑒 −𝜔)

|𝑘𝑧|𝑣𝑇𝑒

 

where 𝐕∗𝑒 = 𝑉∗𝑒𝐞𝑦, 𝑉∗𝑒 = 𝑇𝑒/(𝑒𝐵𝐿𝑛) = 𝜌𝑠𝑐𝑠/𝐿𝑛 is the diamagnetic velocity, 𝜌𝑠 = 𝑐𝑠/Ω𝑖 , 𝑐𝑠 =

√𝑇𝑒/𝑚𝑖, 𝑇𝑒 is the electron temperature, 𝑚𝑖 is the ion mass, 𝑒 is the absolute value of electron charge, 

Ω𝑖 = 𝑒𝐵/𝑚𝑖 is the cyclotron frequency of the ions and 𝑘⊥ = √𝑘𝑥
2 + 𝑘𝑦

2 is the perpendicular wave number. 

Drift modes are unstable (𝛾 > 0) if 𝜔 < 𝑘𝑦𝑉∗𝑒. The 𝜌𝑠 dependence that appears in (2) yields from the ion 

polarization drift 

𝐮𝑝 = −
𝑚𝑖

𝑒𝐵2
∂𝑡𝐄⊥ 

The solution in the limit 𝜌𝑠 = 0 (obtained by neglecting the polarization drift) is 𝜔 = 𝑘𝑦𝑉∗𝑒 , 𝛾 = 0, 

which represents the stable drift waves. For an arbitrary initial condition 𝜙0, this solution is 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜙0(𝑥, 𝑦 − 𝑉∗𝑒𝑡, 𝑧). 

It shows that any potential 𝜙0 in a non-uniform plasma moves with the diamagnetic velocity. Finite 

Larmor radius effects, collisions or other perturbations determine supplementary time dependences that 

modify the potential amplitude and shape but this usually appears on larger time scale. 

Drift type instabilities appear for a large range of wave numbers and produce a turbulent potential. 

Test mode models consider a turbulent plasma with given statistical characteristics of the background 

potential 𝜙𝑏(𝐱, 𝑧, 𝑡) and a small perturbation 𝛿𝜙, 𝜙 = 𝜙𝑏 + 𝛿𝜙. The growth rates and the frequencies of 

the test modes are determined as functions of the statistical characteristics of 𝜙𝑏. The potential 𝜙𝑏 is 

taken as the zero 𝜌𝑠 solution (5). The modification of potential shape and amplitude appears due to 

polarization drift on a larger time scale of the order 1/𝛾. The test mode studies of turbulence are based 

on this time scale separation, which permits a sequential approach. Starting from a potential that is a zero 

order solution (5) it is possible to determine the frequency and the growth rate of test modes as function 

of the statistical characteristics of the potential. They provide information on the tendency in the 



 

evolution of the potential, which is used to determine the test mode properties later in the evolution, and 

so on. We have developed such iterated approach for the drift turbulence [10], [11] (the iterated self-

consistent method - ISC) based on semianalytical estimations of the Lagrangian statistics. The present 

results are based on the detailed numerical study of ion trajectories performed in 2022, which identifies 

important new aspects and reveals the complexity of the Lagrangian statistics. 

The main statistical characteristics of the background turbulence are the amplitude Φ of the potential 

fluctuations, their correlation lengths 𝜆𝑥, 𝜆𝑦 and correlation time 𝜏𝑐. They appear in the Eulerian 

correlation (EC) of the potential (the Fourier transform of the spectrum) defined by 

𝐸(𝐱, 𝑡) ≡ ⟨𝜙𝑏(𝐱
′, 𝑡′)𝜙𝑏(𝐱

′ + 𝐱, 𝑡′ + 𝑡)⟩ 

where ⟨⟩ is the statistical average or the space average. This function is the Fourier transform of the 

spectrum. The amplitude of the stochastic electric drift is 𝑉 = √𝑉𝑥
2 + 𝑉𝑦

2, where 𝑉𝑥 = Φ/𝐵𝜆𝑦, 𝑉𝑦 =

Φ/𝐵𝜆𝑥. These parameters define the time of flight (or the eddying time) 𝜏𝑓𝑙 = 𝜆𝑥/𝑉𝑥 = 𝜆𝑥𝜆𝑦𝐵/𝛽, which 

is the characteristic time for trajectory trapping. 

The perturbations of the electron and ion distribution functions as response to the potential 𝛿𝜙 have 

to be determined as functions of the EC of the background turbulence. 

The electrons have the same response to a perturbation 𝛿𝜙 as in quiescent plasma due to their fast 

parallel motion 

𝛿𝑛𝑒 = 𝑛0(𝑥)
𝑒𝛿𝜙

𝑇𝑒
(1 + 𝑖√

𝜋

2

𝜔 − 𝑘𝑦𝑉∗𝑒
|𝑘𝑧|𝑣𝑇𝑒

) 

[see, for example, [27], page 457]. 

The distribution of the ions 𝑓𝑖(𝐱, 𝐯, 𝑡) in a stochastic potential 𝜙𝑏(𝐱, 𝑡) is solution of the drift kinetic 

equation 

𝑂𝑖𝑓𝑖 + 𝑓𝑖∇ ⋅ 𝐮𝑝 = 0

𝑂𝑖 ≡ ∂𝑡 −
∇𝜙𝑏 × 𝐛

𝐵
⋅ ∇

 

where 𝑂𝑖  is the derivative along ion trajectories. The parallel motion is negligible due to condition (1). The 

distribution 

𝑓0
𝑖 = 𝑛0(𝑥)𝐹𝑀

𝑖 exp⁡ (
𝑒𝜙𝑏(𝐱 − 𝐕∗𝑒𝑡)

𝑇𝑒
) 

represents the short time approximate equilibrium because 𝑂𝑖𝑓0
𝑖 = 0 and the term ∇ ⋅ 𝐮𝑝 ≪ 1 can be 

neglected. Perturbing the potential with 



 

𝛿𝜙(𝑥, 𝑦, 𝑡) = 𝜙𝑘𝜔exp⁡(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡) 

the operator is perturbed with 

𝛿𝑂𝑖 = −
1

𝐵
∇𝛿𝜙 × 𝐞𝑧 ⋅ ∇= 𝛿𝐯 ⋅ ∇ 

and a change of the distribution function appears 𝑓𝑖 = 𝑓0
𝑖 + ℎ. The linearized equation in this 

perturbation is 

𝑂𝑖ℎ + ℎ∇ ⋅ 𝐮𝑝 = −𝛿𝑂
𝑖𝑓0
𝑖 − 𝑓0

𝑖∇ ⋅ 𝛿𝐮𝑝 

with the rhs terms 

𝛿𝑂𝑖𝑓0
𝑖 = 𝑖𝑘𝑦𝑉∗𝑒𝑛0(𝑥)𝐹𝑀

𝑖 𝑒𝛿𝜙

𝑇𝑒
exp⁡ (

𝑒𝜙𝑏(𝐱−𝐕∗𝑒𝑡)

𝑇𝑒
) − 𝑖[𝑘𝑥𝑣𝑥 + 𝑘𝑦𝑣𝑣]𝑛0(𝑥)𝐹𝑀

𝑖 𝑒𝛿𝜙

𝑇𝑒
exp⁡ (

𝑒𝜙𝑏(𝐱−𝐕∗𝑒𝑡)

𝑇𝑒
)

𝑓0
𝑖∇ ⋅ 𝛿𝐮𝑝 = −𝑓0

𝑖 ∂𝑡Δ𝛿𝜙 = 𝑛0(𝑥)𝐹𝑀
𝑖 exp⁡ (

𝑒𝜙𝑏(𝐱−𝐕∗𝑒𝑡)

𝑇𝑒
) (𝑖𝜔𝜌𝑠

2𝑘⊥
2)

𝑒𝛿𝜙

𝑇𝑒

          (1) 

The second term in 𝛿𝑂𝑖𝑓0
𝑖 (the advection of the background potential with the perturbation of the 

velocity) is usually neglected. We show here that it yields a significant contribution due to the coherent 

elements of the ion trajectories 

The equation for the response ℎ is 

𝑂𝑖ℎ + ℎ∇ ⋅ 𝐮𝑝 =⁡−𝑖𝑛0(𝑥)𝐹𝑀
𝑖
𝑒𝜙𝑘𝜔
𝑇𝑒

(𝑘𝑦𝑉∗𝑒 + (𝑘𝑥𝑣𝑥 + 𝑘𝑦𝑣𝑣) − 𝜔𝜌𝑠
2𝑘⊥

2)

exp⁡ (𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑖𝑘𝑧𝑧 − 𝑖𝜔𝑡 +
𝑒𝜙𝑏(𝐱 − 𝐕∗𝑒𝑡)

𝑇𝑒
)

 

The formal solution is obtained by the method of the characteristics as 

ℎ(𝐱, 𝑣, 𝑡) = −𝑛0(𝑥)𝐹𝑀
𝑖 𝑒𝜙𝑘𝜔

𝑇𝑒
(𝑘𝑦𝑉∗𝑒 −𝜔𝜌𝑠

2𝑘⊥
2)Π‾ 1

𝑖 − 𝑛0(𝑥)𝐹𝑀
𝑖 𝑒𝜙𝑘𝜔

𝑇𝑒
Π‾ 2
𝑖                             (2) 

where the propagators are 

Π‾ 1
𝑖 = 𝑖 ∫  

𝑡

−∞
 𝑑𝜏⟨𝑀(𝜏, 𝑡)⟩exp⁡[−𝑖𝜔(𝜏 − 𝑡)]

                                                      (3) 

Π‾ 2
𝑖 = 𝑖 ∫  

𝑡

−∞
 𝑑𝜏⟨(𝑘𝑖𝑣𝑖𝑏(𝐱(𝜏) − 𝐕∗𝑒𝜏))𝑀(𝜏, 𝑡)⟩exp⁡[−𝑖𝜔(𝜏 − 𝑡)]                                            (4) 

and 𝑀(𝜏) is 

𝑀(𝜏, 𝑡) ≡ exp⁡ [
𝑒𝜙𝑏(𝐱−𝐕∗𝑒𝑡)

𝑇𝑒
+ 𝑖𝐤 ⋅ (𝐱(𝜏) − 𝐱) − ∫  

𝑡

𝜏
 𝑑𝜏′∇ ⋅ 𝐮𝑝(𝐱(𝜏

′))]                                   (5) 



 

The integrals are along ion trajectories obtained from Eq. (20) calculated backwards in time with the 

condition at 𝜏 = 𝑡, 𝐱(𝑡) = 𝐱. 

The average of the function 𝑀(𝜏, 𝑡) is determined in two steps: first on the subensemble of the 

trajectories that start from fixed values of the potential 𝜙𝑏(𝐱, 𝑡) = 𝜙
0 (averages conditioned by 𝜙0 ) and 

and secon on the whole statistical ensemble by averaging over 𝜙0. 

𝑀𝜙0(𝜏, 𝑡) = ⟨𝑀(𝜏, 𝑡)⟩𝜙0

⟨𝑀(𝜏, 𝑡)⟩ =−∞
∞ 𝑑𝜙0⟨𝑀(𝜏, 𝑡)⟩𝜙0𝑃(𝜙

0)
                                                              (6) 

where 𝑃(𝜙0) = 1/√2𝜋exp⁡(−(𝜙0/Φ)2/2). This procedure enables the analysis of the effects of the 

coherent components of the motion found in trajectory statistics. 

⁡

𝑀𝜙0(𝜏, 𝑡) =exp⁡ [
𝑒⟨𝜙𝑏(𝜏)⟩𝜙0

𝑇𝑒
+ 𝑖𝐤 ⋅ ⟨(𝐱(𝜏) − 𝐱)⟩𝜙0 − ∫  

𝑡

𝜏
 𝑑𝜏′⟨∇ ⋅ 𝐮𝑝(𝐱(𝜏

′))⟩
𝜙0
]

exp⁡ [
𝑒2⟨(𝛿𝜙𝑏(𝜏))

2⟩
𝜙0

2𝑇𝑒
2 −

𝑘𝑖𝑘𝑗⟨(𝛿(𝑥𝑖(𝜏)−𝑥𝑖))(𝛿(𝑥𝑗(𝜏)−𝑥𝑗))⟩
𝜙0

2
]

exp⁡ [𝑖𝑘𝑖
𝑒⟨(𝛿𝜙𝑏(𝜏))(𝛿(𝑥𝑖(𝜏)−𝑥𝑖))⟩𝜙0

𝑇𝑒
−

𝑒

𝑇𝑒
∫  
𝑡

𝜏
 𝑑𝜏′⟨𝛿𝜙𝑏(𝜏)∇ ⋅ 𝐮𝑝(𝐱(𝜏

′))⟩
𝜙0
]

exp⁡ [−𝑖𝑘𝑖 ∫  
𝑡

𝜏
 𝑑𝜏′⟨(𝛿(𝑥𝑖(𝜏) − 𝑥𝑖))∇ ⋅ 𝐮𝑝(𝐱(𝜏

′))⟩
𝜙0
]

                    (7) 

where 𝜙𝑏(𝐱(𝜏) − 𝐕∗𝑒𝜏) ≡ 𝜙𝑏(𝜏) and 𝑖, 𝑗 = 𝑥, 𝑦. The compressibility term depends on the vorticity 

𝜁(𝐱, 𝑡) = Δ𝜙𝑏(𝐱, 𝑡) 

∫  
𝑡

𝜏

𝑑𝜏′∇ ⋅ 𝐮𝑝(𝐱(𝜏
′)) = −

𝑚𝑖

𝑒𝐵2
∫  
𝑡

𝜏

𝑑𝜏′ ∂𝜏′𝜁(𝜏
′) 

Most of the term in the above exponential function represent coherent components of ion 

trajectories or are influenced by them, as discussed below. 

 

Stochastic and coherent aspects of the trajectories 

We analyze the Lagrangian averages that appear in Eq. (7) and present a short review of the results 

reported in 2022 adapted to the present study. 

The equation of the trajectories / characteristics in the system that moves with the potential (with 

the diamagnetic velocity 𝑉∗ ) is 

𝑑𝐱

𝑑𝑡′
= −∇𝜙 × 𝐞3 + 𝑉𝑑𝐞2 ≡ 𝐯𝑡(𝐱, 𝑡

′)                                                              (8) 



 

where 𝐞1, 𝐞2 are the unit vectors in the plane perpendicular to the confining magnetic field 𝐁 = 𝐵𝐞3, and 

𝐱 = (𝑥1, 𝑥2). The equation is written is a system that moves with the background potential using 

dimensionless quantities with the potential normalized by its amplitude Φ(𝜙 = 𝜙𝑏/Φ), the distances by 

𝜌𝑠, the velocities by 𝑉𝑒 = Φ/(𝐵𝜌𝑠) (a measure of the electric drift) and the time by 𝜏𝑓𝑙 = 𝜌𝑠/𝑉𝑒 = 𝐵𝜌𝑠
2/Φ 

(a measure of the time of flight). The average velocity 𝑉𝑑 is the normalised diamagnetic velocity 𝑉𝑑 =

𝑉∗𝑒/𝑉𝑒. 

These units for time and velocity were chosen because they evidence the combined effects of plasma 

rotation and of the turbulence amplitude. The elements of the statistics of trajectories that appear in Eq. 

(19) are expressed in physical units, which are obtained by scaling the time with 𝜏𝑓𝑙  and by multiplying 

the velocities with 𝑉𝑒. They are also useful because they provide in a simple way the main dependences 

on the amplitude of background potential Φ. The increase of Φ determines the decrease of 𝑉𝑑 and the 

"contraction" of time 

𝑉𝑑 =
𝑉𝑒∗
𝑉𝑒
= (

𝑒Φ

𝑇𝑒

𝐿𝑛
𝜌𝑠
)
−1

, ⁡𝜏𝑓𝑙 =
𝜌𝑠
2𝐵

Φ
 

We have examined the statistical properties of subensembles of trajectories that start from fixed 

values of the potential, 𝜙0 (conditioned statistics). At any value of 𝜙0, there are two categories of 

trajectories: trapped (closed, periodical, with small displacements) and free (non-periodical with large 

displacements). The have found completely different statistics for these categories in the static potential 

where they can be defined. The initial potential on the free trajectories is Gaussian 

𝑃𝑓𝑟(𝜙0) =
1

√2𝜋Δ
exp⁡ (−

(𝜙0)2

2Δ2
) 

where the width Δ < Φ is a decreasing function of Φ that evolve from 1 at small Φ(
𝑒Φ

𝑇𝑒
≪

𝜌𝑠

𝐿𝑛
) to 0 at very 

large Φ (
𝑒Φ

𝑇𝑒
≫

𝜌𝑠

𝐿𝑛
), approximated by 

Δ = [1 − exp⁡ (− (
𝑇𝑒
𝑒Φ

𝜌𝑠
𝐿𝑛
)
2

)]

0.17

 

This shows that at small Φ all the trajectories are free, and Φ progressively closes the trajectories as 

the amplitude of the background potential increases. This precess begins when 
𝑒Φ

𝑇𝑒
≳

𝜌𝑠

𝐿𝑛
 and determines 

the tranzition from the completely random trajectories to the nonlinear Lagrangian statistics that is 

caracterised by complex effects (as trajectory trapping, generation of coherence and of memory effects). 

The trapped trajectories start from values of the initial potential 𝜙0 that have the complementary 

distribution 

𝑃𝑡𝑟(𝜙0) = 𝑃(𝜙0) − 𝑃𝑓𝑟(𝜙0) 



 

The fractions of free 𝑛𝑓𝑟(𝜙0) and trapped 𝑛𝑡𝑟(𝜙0) trajectories that evolve on 𝜙0 contour lines are 

related to these probabilitie 

𝑛𝑓𝑟(𝜙0) = 𝑛𝑓𝑟𝑃
𝑓𝑟(𝜙0), ⁡𝑛𝑡𝑟(𝜙0) = 𝑛𝑡𝑟𝑃

𝑡𝑟(𝜙0), 

where 𝑛𝑓𝑟 and 𝑛𝑡𝑟 are the total fractions of each category. They are compared in Fig. 1 to the distribution 

of the Lagrangian potential 𝑃(𝜙0) and to the above analytical approximations (solid lines), respectively. 

𝑛𝑓𝑟 depends on Φ with monotonic decay from 1 to 0 

𝑛𝑓𝑟 = [1 − exp⁡ (−(
𝑇𝑒
𝑒Φ

𝜌𝑠
𝐿𝑛
)
2

)]

1/4

 

The main result of this study is the identification of coherent motions, which appear for the free 

trajectories in each subensemble of trajectories that evolve on 𝜙0 contour lineas. They are represented 

by average displacements conditioned by 𝜙0, ⟨𝑥𝑖(𝑡)⟩𝜙0,𝑓𝑟. 

The perpendicular average displacement ⟨𝑥1(𝑡)⟩𝜙0𝑃(𝜙
0) has the sign of 𝜙0, as seen Fig. 1 (blue 

points). This coherent displacement has a fast time increase followed by saturation, as seen in Fig. 2 (black 

dashed line). Collecting the positive and the negative displacements, a pair of transitory average velocities 

perpendicular on 𝐕𝑑 conditioned by the sign of 𝜙0 is found. These are the hidden drifts, which have 

opposite directions and exactly compensate each other. 

The other elements of the statistics of the free trajectories conditioned by 𝜙0 (like 

⟨𝑥2(𝑡)⟩𝜙0,𝑓𝑟, ⟨𝛿𝑥𝑖
2(𝑡)⟩

𝜙0,𝑓𝑟
) do not dependent on 𝜙0, which means that the free trajectories with 

different values of 𝜙0 are statistically identical, except for the perpendicular average displacement that is 

⟨𝑥1(𝑡)⟩𝜙0,𝑓𝑟 = 𝜙
0/𝑉𝑑. 

We have also found that the Lagrangian potential 𝜙(𝐱(𝑡)) and vorticity 𝜔(𝐱(𝑡)) show conditional order 

represented by averages proportional to 𝜙0. They are essentially produced by the trapped trajectories, 

because ⟨𝜙(𝐱(𝑡))⟩𝜙0,𝑡𝑟, ⟨𝜔(𝐱(𝑡))⟩𝜙0,𝑡𝑟 are time invariant, while the contributions of the free trajectories 

decay to zero. This is a selective decorrelation mechanism, that is induced by 𝑉𝑑 through the structure of 

the contour lines of the potentials and affects only the free trajectories. The typical time evolution of 

⟨𝜙(𝐱(𝑡))⟩𝜙0  and ⟨𝜔(𝐱(𝑡))⟩𝜙0  is shown in Fig. 2 by the blue and red dashed lines. The asymptotic values 

⟨𝜙(𝐱(𝑡))⟩𝜙0𝑃(𝜙
0) → 𝜙0𝑛𝑡𝑟(𝜙0), ⟨𝜔(𝐱(𝑡))⟩𝜙0𝑃(𝜙

0) → −𝜙0(1/𝜆1
2 + 1/𝜆2

2)𝑛𝑡𝑟(𝜙0) are attained in a 

short time. 



 

 

FIG. 1: Main elements of the Lagrangian statistics conditioned by 𝜙0. The fractions of trajectories at 

saturation: 𝑃(𝜙0) (black) and its components 𝑛𝑓𝑟(𝜙0) (green) and 𝑛𝑡𝑟(𝜙0) (red). The conditioned 

perpendicular average ⟨𝑥1⟩𝜙0𝑃(𝜙
0) ∗ 𝑉𝑑 for 𝜏𝑐 = ∞ (blue poins) and 𝜏𝑐 = 33 (magenta points). 

Equation (17) shows that the Lagrangian averages conditioned by 𝜙0 are always functions of 𝜙0 (even 

when the average is determined only by one category and does not depend on 𝜙0). As a result, the 

correlations of the fluctuations 

 

FIG. 2: Effects of the time dependence of the potential: time evolution of the averages conditioned by the 

initial potential for the perpendicular displacements, the Lagrangian potential and the vorticity in frozen 

(dashed lines) and time dependent (solid lines) potentials. 𝜙0 = 1,𝑉𝑑 = 0.3 and 𝜏𝑐 = 33. 

(as ⟨𝛿𝑥𝑖
2(𝑡)⟩

𝜙0
 ) contain the averages (the ordered motion), because ⟨𝑥𝑖(𝑡)⟩𝜙0  and ⟨𝑥𝑖(𝑡)⟩𝜙0,𝑐 do not 

compensate in the equations of the type writted for 𝑥𝑖
2(𝑡). Thus, the hidden coherence influences the 

correlations of the Lagrangian fluctuations (including the transport). This process is explicitly presented in 

the next sections for the stochastic advection of fields. 

The statistics of the free and trapped trajectories obtained by adding the contribution of all contour 

lines (by integrating over 𝜙0 ) has completely different properties for the two categories. The probability 



 

of displacements 𝑃𝑡𝑟(𝑥1, 𝑥2, 𝑡) of the trapped trajectories is a narrow peak around 𝐱 = 𝟎. The distribution 

of the free trajectories 𝑃𝑓𝑟(𝑥1, 𝑥2, 𝑡) is a Gaussian with much larger extension (especially in the parallel 

direction where it increases in time), which moves along 𝐕𝑑  with the velocity 𝑉𝑑/𝑛𝑓𝑟 > 𝑉𝑑. These two 

contributions appear separately in the total probability 𝑃(𝑥1, 𝑥2, 𝑡), as seen in Fig. 3 (blue lines). The 

asymptotic transport is dominated by the coherent motion.                                                             a  

 

 

FIG. 3: The probability of displacements across (left panel) and along (right panel) the average velocity 𝐕𝑑 

for frozen potential (blue) and for time-dependent potential with 𝜏𝑐 = 33 (magenta). 

In the case of time dependent potentials the trajectories cannot be organized according to the 

categories, because closed trajectories cannot exist. However, at slow time variation of the potential, 

random trapping events exist (as intervals of eddying motion) on all trajectories calculated for long time. 

This are separated by long jumps that are similar with the free trajectories. The statistical analysis can be 

conditioned only by the initial potential 𝜙0. 

The results obtained in time-dependent potentials are rather surprising. Instead of the expected 

decay after the 

decorrelation time, a strong increase of the Lagrangian coherence is found. The average conditioned by 

𝜙0 of the perpendicular displacements 𝑥1(𝑡) significantly increase, as seen in Fig. 2 (black solid line). The 

time derivative of ⟨𝑥1(𝑡)⟩𝜙0  does not vanish as in frozen potential, but it exists even for 𝑡 ≫ 𝜏𝑐. This 

determines a long life of the hidden drifts. 

The stochastic time variation determines total decorrelation of the conditioned Lagrangian potential 

⟨𝜙(𝐱(𝑡))⟩𝜙0, but this is a very slow process. As seen in Fig. 2 (blue solid line), ⟨𝜙(𝐱(𝑡))⟩𝜙0  still has a 

significant value at 𝑡 = 200 ≅ 6𝜏𝑐 where the Eulerian correlation is 𝐸(𝟎, 200) = 10−8. The Lagrangian 

vorticity 𝜔(𝐱(𝑡)) has similar behavior, except the sign, which is opposite to the sign of ⟨𝜙(𝐱(𝑡))⟩𝜙0. Both 

quantities have very long memory of the initial condition.  

The time evolution of the average velocity, Lagragian potential and vorticity are all governed by the 

same law, as seen in Fig. 4. This defines the memory function and the memory time 𝜏𝑚  



 

 𝐹𝑚 = exp⁡(−
𝑡

𝜏𝑚
)                                                                            (9) 

 

FIG. 4: The time dependence of the average radial displacement, velocity, Lagragian potential and 

vorticity, conditioned by the sign of the initial potential 𝜙0 for the frozen (dashed) and the time-

dependent (solid) cases. The thin dashed lines are ~exp (−
𝑡

90
),  𝑉𝑑 = 0.3 and 𝜏𝑐 = 33. 

The probability of displacements 𝑃(𝑥1, 𝑥2, 𝑡) is strongly modified in time-dependent potentials, as 

seen in Fig. 3 (magenta lines). A trace of the contribution of the trapped trajectories can still be observed, 

but the shape of 𝑃 is completely different. It contributes to the conclusion that the trajectories 

conditioned by the initial potential become statistically identical for all values of 𝜙0, not only on the 

domain of small potential with width Δ, as in frozen potentials. 

The long memory and the enhanced coherence are effects of the stochastic liberation of the 

trajectories that initially are trapped, followed by repeated stochastic captures that are constraint by the 

approximate invariance of the total potential. 

• The averages in the propagators 

The characteristics and approximations of the main averages that appear in Eq. (7) are discussed 

below and shown in Figs. 5-9. 

The radial displacements have dominant coherent behavior represented by an average that appears 

only for the free trajectories in static potentials and has the sign of 𝜙0 

⟨𝑥1(𝑡) − 𝑥1(0)⟩𝜙0𝑃(𝜙
0) =

𝜙0

𝑉𝑑𝐵
𝑛𝑓𝑟(𝜙0) 

In time dependent potentials this coherent motion increases and extends to the whole domain of 𝜙0, as 

seen in Fig 1 fig1_fidp by coparing the magenta and blue points. We approximate this quantity by retaining 

the main feature, which is the coincidence of its sign with the sign of 𝜙0. The dependence on 𝜙0 is 

eliminated by integrating on the positive and negative domains 



 

⟨𝑥1(𝑡) − 𝑥1(0)⟩+ = ∫ ⟨𝑥1(𝑡) − 𝑥1(0)⟩𝜙0𝑃(𝜙
0)𝑑𝜙0,

∞

0 ⬚

⬚

⁡⟨𝑥1(𝑡) − 𝑥1(0)⟩− = −⟨𝑥1(𝑡) − 𝑥1(0)⟩+ 

These coherent displacements and the corresponding average velocities can be approximated by (in 

physical units) 

⟨𝑥1(𝑡) − 𝑥1(0)⟩𝑠𝑔 = 𝜌𝑠𝑠𝑔 [𝑔1
𝑥1 (1 − exp⁡ (−

𝑡

𝜏𝑚
)) + 𝑔2

𝑥1]

⟨𝑣1(𝑡)⟩𝑠𝑔 = 𝑉𝑒𝑠𝑔
𝑔1
𝑥1

𝜏𝑚
exp⁡ (−

𝑡

𝜏𝑚
)

 

⟨𝑥1(𝑡) − 𝑥1(0)⟩sg  is approximately linear in time for intervals of the order 50𝜏𝑓𝑙 >> 𝜏∗, which enable the 

use of 

⟨𝑥1(𝜏) − 𝑥1(𝑡)⟩𝑠𝑔 ≅ 𝜏𝑓𝑙⟨𝑣1(𝜏)⟩𝑠𝑔(𝑡 − 𝜏) 

in the propagators (in the time integrals). 

The amplitudes of the fluctuations ⟨(𝛿(𝑥𝑖(𝜏) − 𝑥𝑖)) (𝛿(𝑥𝑗(𝜏) − 𝑥𝑗))⟩
𝜙0

 are subdiffusive in the radial 

direction and superdiffusive in the poloidal direction 

⟨(𝛿(𝑥1(𝑡) − 𝑥1))
2
⟩
𝜙0
≅ 𝜌𝑠

2 (
𝑡

𝜏𝑓𝑙
)

𝛼1

,

⟨(𝛿(𝑥2(𝑡) − 𝑥2))
2
⟩
𝜙0
≅ 𝜌𝑠

2 (
𝑡

𝜏𝑓𝑙
)

𝛼2

,

 

where 𝛼1 < 1 and 𝛼2 > 1. They have a weak dependence on 𝜙0, which can be ignored. The diffusion 

coefficients are 

𝐷11(𝑡) = 𝜌𝑠𝑉𝑒𝛼1 (
𝑡

𝜏𝑓𝑙
)

𝛼1−1

, ⁡𝐷22(𝑡) = 𝜌𝑠𝑉𝑒𝛼2 (
𝑡

𝜏𝑓𝑙
)

𝛼2−1

 

The linear approximation on intervals used for ⟨𝑥1(𝜏) − 𝑥1(𝑡)⟩𝑠𝑔 can be applied in this case because 

the time variation is slow 

⟨(𝛿(𝑥𝑖(𝜏) − 𝑥𝑖(𝑡)))
2
⟩ ≅ 𝜏𝑓𝑙𝐷𝑖𝑖(𝜏)(𝑡 − 𝜏) 

There is cross correlation of the displacements that is roughly linear in 𝜙0, as seen in Fig. croscorel 

⟨(𝛿(𝑥𝑖(𝜏) − 𝑥𝑖)) (𝛿(𝑥𝑗(𝜏) − 𝑥𝑗))⟩
𝜙0
≅ 𝜌𝑠

2𝑔12
𝜙0

Φ
 



 

The Lagrangian potential has in the presence of trapping a coherent component with long time 

memory 

⟨𝜙𝑏(𝜏)⟩𝜙0 = Φ𝜙
0exp⁡(−𝜏/𝜏𝑚) 

that is linear in 𝜙0. The conditioned fluctuations ⟨(𝛿𝜙𝑏(𝜏))
2⟩𝜙0  have time-increasing amplitude (from 

zero to the Eulerian value Φ) with negligible dependence on 𝜙0. The Lagrangian vorticity has very similar 

properties with the potential. Its coherent component has the same dependence on 𝜙0 and time 

⟨𝜁(𝜏)⟩𝜙0 =
Φ

𝜌𝑠
2 𝑔

𝜁𝜙0exp⁡(−𝜏/𝜏𝑚) 

where 𝑔𝜁  depends on the spectrum of the turbulence (on the correlation lenghts). Since 𝜏𝑚 >> 𝜏∗, the 

liniar approximations can be used in the propagators 

⟨𝜙𝑏(𝜏)⟩𝜙0 ≅ ⟨𝜙𝑏(𝑡)⟩𝜙0 (1 −
𝜏 − 𝑡

𝜏𝑚
) , ⁡⟨𝜁(𝜏)⟩𝜙0 ≅ ⟨𝜁(𝑡)⟩𝜙0 (1 −

𝜏 − 𝑡

𝜏𝑚
). 

The average of the compressibility term is 

∫  
𝑡

𝜏

𝑑𝜏′⟨∇ ⋅ 𝐮𝑝(𝐱(𝜏
′))⟩

𝜙0
= −

𝑚𝑖

𝑒𝐵2
∫  
𝑡

𝜏

𝑑𝜏′ ∂𝜏′⟨𝜁(𝜏
′)⟩𝜙0 ≅ −

𝑉𝑒
𝑐𝑠

𝜏 − 𝑡

𝜏𝑚
. 

The correlation of the radial displacements 𝛿(𝑥1(𝜏) − 𝑥1) with the vorticity 𝜁(𝜏′) is a slowly increasing 

function of time that depends weakly on 𝜙0 and can approximated by 

⟨𝛿(𝑥1(𝜏) − 𝑥2)𝜁(𝜏
′)⟩𝜙0 ≅

Φ

𝜌𝑠
𝑔𝜁1exp⁡ (

𝜏 − 𝜏′

𝜏𝑚
) 

with 𝑔𝜁1 ≅ 0.3, while the poloidal displacements yield a roughly constant time function with linear 

dependence in 𝜙0 

⟨𝛿(𝑥2(𝜏) − 𝑥2)𝜁(𝜏
′)⟩𝜙0 ≅

Φ

𝜌𝑠
𝑔𝜁2

𝜙0

Φ
 

where 𝑔𝜁2 ≅ 13. The correlations with the compressibility terms are 

∫  
𝑡

𝜏

 𝑑𝜏′⟨𝛿(𝑥1(𝜏) − 𝑥1)∇ ⋅ 𝐮𝑝(𝐱(𝜏
′))⟩

𝜙0
⁡= −

𝑚𝑖

𝑒𝐵2
Φ

𝜌𝑠
𝑔𝜁1 (exp⁡ (

𝑡 − 𝜏

𝜏𝑚
) − 1)

⁡= −𝜌𝑠
𝑉𝑒
𝑐𝑠
𝑔𝜁1

𝜏 − 𝑡

𝜏𝑚

∫  
𝑡

𝜏

 𝑑𝜏′⟨𝛿(𝑥2(𝜏) − 𝑥2)∇ ⋅ 𝐮𝑝(𝐱(𝜏
′))⟩

𝜙0
⁡= −𝜌𝑠

𝑉𝑒
𝑐𝑠
𝑔𝜁2

𝜙0

Φ

 

 



 

 

 

FIG. 5: The time dependence of the average Lagrangian vorticity (left) and potential (right) conditioned 

by the initial potential 𝜙0 for several values of 𝜙0. Memory effects are seen and the linear dependence 

on 𝜙0. 𝑉𝑑 = 0.3 and 𝜏𝑐 = 33. 

 

FIG. 6: The time dependence of the average radial displacement conditioned by 𝜙0 (left) and by the 

positive sign of 𝜙0 (right). Also shown in the left panel are the approximations over memory time (red) 

and linear approximations (magenta). 𝑉𝑑 = 0.3 and 𝜏𝑐 = 33. 



 

 

FIG. 7: The time dependence of the average radial velocity conditioned by the positive sign of 𝜙0 

(points) and its approximation (red). 𝑉𝑑 = 0.3 and 𝜏𝑐 = 33. 

 

Correlations between the trajectories and the Lagrangian potential appear in both directions. In the 

radial direction, the correlation does not depend on 𝜙0, is negative and its absolute value increases in 

time and saturates 

⟨(𝛿𝜙𝑏(𝜏))(𝛿(𝑥1(𝜏) − 𝑥1))⟩𝜙0 ≅ −Φ𝜌𝑠𝑔
𝜙1, ⁡𝜏 − 𝑡 ≳ 𝜏𝑐 

where 𝑔𝜙1 ≅ 2. In the poloidal direction, the correlations are stronger, reaching values up to 10 . They 

are increasing functions of time as well, which saturate at values that depend linearly on 𝜙0 

⟨(𝛿𝜙𝑏(𝜏))(𝛿(𝑥2(𝜏) − 𝑥2))⟩𝜙0 → −𝜙0Φ𝜌𝑠𝑔
𝜙2 

where the 𝑔𝜙2 ≅ 5. The product of averages ⟨𝛿𝜙𝑏(𝜏)⟩𝜙0⟨(𝛿(𝑥2(𝜏) − 𝑥2))⟩𝜙0 has similar behaviour and 

values but with opposite sign, which leads to significantly smaller values for the average 

⟨𝜙𝑏(𝜏)(𝑥1(𝜏) − 𝑥1)⟩𝜙0  

The other average in the function 𝑀𝜙0(𝜏, 𝑡) can be neglected. 



 

 

FIG. 8: Trajectory dispersion in the radial (left) and poloidal (right directions) in time dependent (magenta) 

and static (blue) potentials. Also shown are the dispersions of the trapped (pointed) and free (dashed) 

trajectories. The time variation of the potential (magenta) determines subdiffusive radial transport (not 

saturated) and superdiffusive poloidal transport (not ballistic). 

 



 

FIG. 9: The cross correlation of the displacements conditioned by 𝜙0 as function of 𝜙0 shows the 

approximate linearity in 𝜙0 (left). The time dependence of  these correlation integrated aver positive 𝜙0 

(right). 

The dispersion relation of the test modes on turbulent plasma 

Using the above statistical elements, the function 𝑀𝜙0(𝜏, 𝑡) can be written as 

𝑀𝜙0(𝜏, 𝑡)⁡= exp⁡[𝜙0𝐴 + 𝐵 + sign⁡(𝜙0)𝐶]

𝐴⁡= Φexp⁡(−𝜏/𝜏𝑚) (1 −
𝜏−𝑡

𝜏𝑚
) +

𝑉𝑒

𝑐𝑠
𝑔𝜁

𝜏−𝑡

𝜏𝑚
− 𝑘1𝑘2𝜌𝑠

2𝑔12 − 𝑖𝑘2𝜌𝑠
𝑒Φ

𝑇𝑒
𝑔𝜙2 + 𝑖𝑘2𝜌𝑠

𝑉𝑒

𝑐𝑠
𝑔𝜁2

𝐵⁡=
𝑒2Φ2

2𝑇𝑒
2 −

1

2
𝑘𝑖
2𝜏𝑓𝑙𝐷𝑖𝑖(𝜏)(𝑡 − 𝜏) − 𝑖𝑘1𝜌𝑠

𝑒Φ

𝑇𝑒
𝑔𝜙1 + 𝑖𝑘1𝜌𝑠

𝑉𝑒

𝑐𝑠
𝑔𝜁1

𝜏−𝑡

𝜏𝑚

𝐶⁡= 𝑖𝑘1𝜏𝑓𝑙⟨𝑣1(𝜏)⟩𝑠𝑔(𝑡 − 𝜏).

           (10) 

The integral over 𝜙0 has to be separately performed for positive and negative domains due to the 

term dependent on the sign of 𝜙0. 

⁡⟨𝑀(𝜏, 𝑡)⟩ = ∫ 𝑑𝜙0⟨𝑀(𝜏, 𝑡)⟩𝜙0𝑃(𝜙
0)

∞

−∞

=
1

√2𝜋
∫ 𝑑𝜙0exp⁡ [−

(𝜙0)2

2
+ 𝜙0𝐴 + 𝐵 + 𝐶]

∞

0

+∫ 𝑑𝜙0exp⁡ [−
(𝜙0)2

2
+ 𝜙0𝐴 + 𝐵 − 𝐶]

0

−∞

=exp⁡(𝐵 + 𝐶) [
1

2
+

𝐴

√2𝜋
] + exp⁡(𝐵 − 𝐶) [

1

2
−

𝐴

√2𝜋
]

 

The time integral in the propagator is calculated by separating the time-dependent parts in the 

functions present in ⟨𝑀(𝜏, 𝑡)⟩ 

𝐴 = 𝐴𝑠 + 𝐴𝑡(𝜏 − 𝑡)

𝐴𝑠 = Φexp⁡(−𝜏/𝜏𝑚) − 𝑘1𝑘2𝜌𝑠
2𝑔12 − 𝑖𝑘2𝜌𝑠

𝑒Φ

𝑇𝑒
𝑔𝜙2 + 𝑖𝑘2𝜌𝑠

𝑉𝑒

𝑐𝑠
𝑔𝜁2

𝐴𝑡 = Φexp⁡(−𝜏/𝜏𝑚)
1

𝜏𝑚
+
𝑉𝑒

𝑐𝑠
𝑔𝜁

1

𝜏𝑚

𝐵 = 𝐵𝑠 + 𝐵𝑡(𝜏 − 𝑡)

𝐵𝑠 =
𝑒2Φ2

2𝑇𝑒
2 − 𝑖𝑘1𝜌𝑠

𝑒Φ

𝑇𝑒
𝑔𝜙1

𝐵𝑡 =
1

2
𝑘𝑖
2𝜏𝑓𝑙𝐷𝑖𝑖(𝜏) + 𝑖𝑘1𝜌𝑠

𝑉𝑒

𝑐𝑠
𝑔𝜁1

1

𝜏𝑚

𝐶 = 𝑖𝐶𝑡(𝜏 − 𝑡), ⁡𝐶𝑡 = −𝑘1𝜏𝑓𝑙⟨𝑣1(𝜏)⟩𝑠𝑔

                                 (11) 

The integrals of the two terms of ⟨𝑀(𝜏, 𝑡)⟩ are 



 

𝐼1⁡= 𝑖exp⁡(𝐵𝑠) ∫  
𝑡

−∞
 𝑑𝜏 [

1

2
+
𝐴𝑠+𝐴𝑡(𝜏−𝑡)

√2𝜋
] exp⁡[−(𝑖𝜔 − 𝐵𝑡 − 𝑖𝐶𝑡)(𝜏 − 𝑡)]

⁡= exp⁡(𝐵𝑠) [
−(

1

2
+
𝐴𝑠

√2𝜋
)

𝜔−𝐶𝑡+𝑖𝐵𝑡
+

𝑖𝐴𝑡

√2𝜋(𝜔−𝐶𝑡+𝑖𝐵𝑡)
2]

𝐼2⁡= 𝑖exp⁡(𝐵𝑠) ∫  
𝑡

−∞
 𝑑𝜏 [

1

2
−
𝐴𝑠+𝐴𝑡(𝜏−𝑡)

√2𝜋
] exp⁡[−(𝑖𝜔 − 𝐵𝑡 + 𝑖𝐶𝑡)(𝜏 − 𝑡)]

⁡= exp⁡(𝐵𝑠) [
−(

1

2
−
𝐴𝑠

√2𝜋
)

𝜔+𝐶𝑡+𝑖𝐵𝑡
−

𝑖𝐴𝑡

√2𝜋(𝜔+𝐶𝑡+𝑖𝐵𝑡)
2]

                           (12) 

The propagator (3) is 

Π‾ 1
𝑖 = 𝐼1 + 𝐼2                                                                                             (13) 

The average in Eq. (4) can be calculated from 

⟨𝑘𝑖𝑣𝑖𝑏(𝜏)𝑀(𝜏)⟩𝜙0 =
𝑑

𝑑𝑐
⟨𝑀(𝜏) exp(𝑐𝑘𝑖𝑣𝑖𝑏(𝜏))⟩𝜙0

|𝑐=0 

The average in the rhs of this equation can be written as 

𝑑

𝑑𝑐
⟨𝑀(𝜏) exp(𝑐𝑘𝑖𝑣𝑖𝑏(𝜏))⟩𝜙0

|𝑐=0

=⁡⟨𝑀(𝜏, 𝑡)⟩𝜙0
𝑑

𝑑𝑐
exp⁡[𝑐𝑘𝑖⟨𝑣𝑖𝑏(𝜏)⟩𝑠𝑔]

=⁡⟨𝑀(𝜏, 𝑡)⟩𝜙0[𝑘𝑖⟨𝑣𝑖𝑏(𝜏)⟩𝑠𝑔 + 𝑖𝑘𝑖𝑘𝑗⟨𝛿𝑣𝑖𝑏(𝜏)(𝑥𝑖(𝜏) − 𝑥𝑖)⟩𝜙0]

=⁡⟨𝑀(𝜏, 𝑡)⟩𝜙0[𝑘1⟨𝑣1𝑏(𝜏)⟩𝑠𝑔 + 𝑖𝑘𝑖𝑘𝑗𝐷𝑖𝑗]

 

because we have found that the correlations of the fluctuations of the velocity with the background 

potential and with the polarization drift are small and can be neglected. The average over the potential 

yields 

∫ 𝑑𝜙0⟨𝑀(𝜏, 𝑡)⟩𝜙0𝑃(𝜙
0) [𝑘1⟨𝑣1𝑏(𝜏)⟩𝑠𝑔 + 𝑖𝑘𝑖𝑘𝑗𝐷𝑖𝑗

𝜙0
]

∞

−∞

=𝑘1⟨𝑣1𝑏(𝜏)⟩+exp⁡(𝐵 + 𝐶) [√
𝜋

2
+ 𝐴] − 𝑘1⟨𝑣1𝑏(𝜏)⟩+exp⁡(𝐵 − 𝐶) [√

𝜋

2
− 𝐴] + 𝑖𝑘𝑖𝑘𝑗𝐷𝑖𝑗⟨𝑀(𝜏, 𝑡)⟩

 

The propagator (4) is 

Π‾ 2
𝑖 = 𝑘1⟨𝑣1𝑏(𝜏)⟩+𝐼1 − 𝑘1⟨𝑣1𝑏(𝜏)⟩+𝐼2 + 𝑖𝑘𝑖𝑘𝑗𝐷𝑖𝑗Π‾ 1

𝑖                                                  (14) 

The dispersion relation for test modes in turbulent plasma is 

−(𝑘𝑦𝑉∗𝑒 −𝜔𝜌𝑠
2𝑘⊥

2)Π‾ 1
𝑖 − Π‾ 2

𝑖 = 1 + 𝑖√
𝜋

2

𝜔−𝑘𝑦𝑉∗𝑒

|𝑘𝑧|𝑣𝑇𝑒

−(𝑘𝑦𝑉∗𝑒 −𝜔𝜌𝑠
2𝑘⊥

2 + 𝑖𝑘𝑖𝑘𝑗𝐷𝑖𝑗)(𝐼1 + 𝐼2) − 𝑘1⟨𝑣1𝑏(𝜏)⟩+(𝐼1 − 𝐼2) = 1 + 𝑖√
𝜋

2

𝜔−𝑘𝑦𝑉∗𝑒

|𝑘𝑧|𝑣𝑇𝑒

                           (15) 



 

Taking 𝐴𝑡 = 0 because is small due to the factor 1/𝜏𝑚 

𝐼1 + 𝐼2⁡= exp⁡(𝐵𝑠) [
−(

1

2
+
𝐴𝑠

√2𝜋
)

𝜔−𝐶𝑡+𝑖𝐵𝑡
+

−(
1

2
−
𝐴𝑠

√2𝜋
)

𝜔+𝐶𝑡+𝑖𝐵𝑡
]

⁡= −
exp⁡(𝐵𝑠)

(𝜔−𝑖𝐵𝑡)
2−𝐶𝑡

2 [(𝜔 − 𝑖𝐵𝑡) +
𝐴𝑠

√2𝜋
2𝐶𝑡]

𝐼1 − 𝐼2⁡= −
exp⁡(𝐵𝑠)

(𝜔−𝑖𝐵𝑡)
2−𝐶𝑡

2 [𝐶𝑡 +
𝐴𝑠

√2𝜋
2(𝜔 − 𝑖𝐵𝑡)]

                                                            (16) 

    The dispersion relation (15) is rather complex. The effects of ion trajectory coherence strongly influence 

the propagator and determine a new term (the second in (15) that reflects the ordered radial 

displacements). 

    These results will be implemented in a code based on the iterated selfconsistent approach, which 

determines the evolution of turbulence from results of the dispersion relation and trajectory simulation 

[10]. The evolution of turbulence from a given initial spectrum with small amplitude is determined by a 

repeated sequence, which consists of: 

1. solving the dispersion (15) for each mode; 

2. determining the short time (of the order of τm) evolution of the spectrum from the growth rates 

and frequencies; 

3. calculation of the trajectories in the new potential over the next interval τm, and of the statistical 

quantities in the  dispersion equation. 

 

Effects of the ion trajectory coherence in drift type turbulence 

    The main effects of coherence can be analyzed from the structure of the propagators and from the 

characteristics of the statistical quantities contained in the dispersion equation. 

    For small amplitude of the background potential ((eΦ)/Te ≪ ρs /Ln), the time of flight is larger than the 

decorrelation time and trapping and coherence do not appear. The diffusion is normal with very small 

coefficients in both directions. The distribution of the displacements is Gaussian. The complex set of 

averages conditioned by φ⁰ that represent aspects of coherence does not exist. Then 

𝐴𝑠 = 0, 𝐴𝑡 = 0, 𝐵𝑠 = 0, 𝐵𝑡 = 𝑘𝑖
2𝑉𝑒𝜌𝑠𝐷𝑖𝑖(𝜏), 𝐶 = 0, 

which makes 

𝐼1 = 𝐼2 =
1

2(𝜔 + 𝑖𝐵𝑡)
 

and leads to the well-known results of turbulent attenuation of the large k modes 



 

𝛾⁡= √
𝜋

2

𝜔(𝑘𝑦𝑉∗𝑒 −𝜔)

|𝑘𝑧|𝑣𝑇𝑒
− 𝑖𝑘𝑖

2𝑉𝑒𝜌𝑠𝐷𝑖𝑖
 

As turbulence amplitude increases due to the positive γ, the turbulence reaches the nonlinear regime 

((eΦ)/Te ~ ρs /Ln), except for the cases of very small density gradients. The first effects are direct (increase 

of the terms that depend on Φ) and through correlations (namely the cross correlation of the 

displacements and correlation of the Lagrangian potential with the trajectories). The functions As and Bs 

begin to increase 

𝐴𝑠 = Φexp (−
𝜏

𝜏𝑚
) − 𝑘1𝑘2𝜌𝑠

2𝑔12 − 𝑖𝑘2𝜌𝑠
𝑒Φ

𝑇𝑒
𝑔𝜙2, 𝐵𝑠 =

𝑒2Φ2

2𝑇𝑒
2 − 𝑖𝑘1𝜌𝑠

𝑒Φ

𝑇𝑒
𝑔𝜙1.⁡ 

    First, the dominant effect is determined by Bs, which increases the frequencies. The effect of As only 

consists in the generation of a small difference between I₁ and I₂. The propagator Π‾ 1
𝑖  is not dependent on 

As at this level of turbulence.   

    The main effect is produced at larger amplitudes, when the trapping is stronger and produces radial 

coherent displacements and memory effects that increase the coherence. It determine a weak time 

increase of ⟨𝑥1(𝜏) − 𝑥1(𝑡)⟩𝑠𝑔 and generates average perpendicular velocities. These effects appear in the 

dispersion relation (15) where the second term is not zero in these conditions and are also represented 

by the term C in the propagator. Both components are modified and the diference I₁-I₂ increases. This 

term is a new source of instability that adds to that determined by the density gradient when the 

amplitude of the background turbulence is large. It determines unstable modes completely different of 

the drift modes: with ky = 0, kx ≠ 0 and very small frequencies, much smaller than the diamagnetic 

frequency, the zonal flow modes. 

     The evolution of the turbulence in this strongly nonlinear stage is rather complex. The memory effects 

make the frequencies and the growth rates dependent on time during intervals of the order τm. The radial 

coherence determines first the increase of the amplitude of the drift type turbulence despite the 

superdiffusive poloidal transport. The zonal flow modes are weakly affected by trajectory dispersion, 

which is subdiffusive along x1, and they grow in this phase. This determines important modifications of 

the spectrum of the background potential, which acquires a new component in the domain that is stable 

for the drift modes (ky ≅ 0, kx of the order 1/⟨𝑥1(𝜏) − 𝑥1(𝑡)⟩𝑠𝑔). The complexity of the evolution is very 

high in these conditions because the coherent motion influences the frequency and growth rate through 

all the statistical quantities that apper in Eq. (15). The background turbulence has complicated changes in 

its spectrum that have to be taken into account in the iterated selfconsistent approach. It is already rather 

clear that φb has not a smooth evolution, but is characterized by time fluctuations on the scale of τm. 

 

Conclusions 



 

    The main findings of this work are: 

• A second source of instability, which develops as the amplitude of the turbulence increases 

It is the second term in the dispersion relation (15) that is determined by the coherent motion in 

the radial direction. It is interesting to emphasize that this source acts only if 𝐼1 ≠ 𝐼2, and that this 

difference exists only due to coherent aspects of turbulence.  

• We have identified a new characteristic time in the statistics of trajectories and in the evolution 

of turbulence: the memory time τm. 

• The growth rates and the frequencies are intrinsically time-dependent 

The characteristics of the turbulent potential are not smooth time functions, but they have 

oscillating evolution on time intervals of the order of τm. This is much longer than the correlation 

time 1/γ and corresponds to very small frequencies, much smaller than ω. Such evolution is in 

agreement with the results of the numerical simulations and of the experimental measurement.  

We will examine in the next period the possibility of extracting characteristics of the turbulence from 

these oscillations. 
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Modelling of the transport-turbulence dependencies. Programming of Bayesian 

inference. 

 

Introduction 
 
Turbulence and turbulent transport remain, to the present day, some of the biggest challenges in the path 

towards achieving controlled thermo-nuclear fusion. Since every experimental device operates on high-

temperature plasmas driven far from equilibrium, turbulence originating from small scale instabilities that 

extract energy from macroscopic gradients is a characteristic of fusion discharges almost universally. This 

is especially true for tokamak devices under the EUROfusion work-package WPTE, like ASDEX Upgrade, 

MAST-U, TCV, etc., where the team working on the current project is assigned various tasks.  

 

Turbulent transport is one side of the problem and it raises many difficult questions such as the 

dependencies between plasma parameters and transport, how does turbulence drive transport, what 



 

physical (microscopic) mechanisms are at play, and how can we accurately predict it. In this report, we 

attempt to provide some partial theoretical answers to some of these queries. We use a statistical model 

for turbulent transport that can describe the intricacies of gyro-center trajectories in environments 

resembling tokamaks. In practice, the model is implemented using a numerical Fortran code that has been 

applied to other problems of a similar nature [1-4]. Since our simulations are much faster than gyro-kinetic 

counterparts, they can be executed on modest CPU architectures. They produce a set of radial transport 

coefficients (diffusion and velocity).  Particle distributions, magnetic configuration, plasma equilibrium, 

and statistical characteristics of turbulence constitute the input. As a result, the code permits the creation 

of injective relations between transport coefficients and tokamak (discharge) parameters. The former can 

be utilized to calculate the plasma's dynamical tendencies. Once such relations are found, even on a 

numerical level, they may provide information about the underlying physical mechanisms of the transport 

as well as strategies for mitigating its negative effects.  

 

The purpose of the present report goes beyond the simulation and the understanding of underlying 

physics of turbulent transport.  Our goal is to create analytical models, or at least approximations, for the 

relationships between parameters and transport. Should this be accomplished with adequate precision, 

it would serve as a valuable instrument for forecasting transport in various scenarios that may arise during 

plasma discharges or for investigating parametric spaces with unknown parameters.  Generally speaking, 

turbulent features are used to depict the latter. In order to achieve this type of mathematical modelling 

through regression, we need to develop a numerical database of results. Any meta-parameters that will 

arise in the analytical expressions of the regression models will be evaluated using such a database. 

Moreover, the latter will serve as learning and testing grounds for machine learning tools in a future phase 

of the project when different instruments such as feed-forward, deep-learning, and Bayesian neural 

networks will be developed. The latter may avoid the requirement for an approximate regression model 

and enable a quick and precise way to forecast turbulent transport. 

 

Theory 

 

We describe here, in short, the transport model, the statistical approach, and the numerical details of the 

code. The latter is already fully developed from the previous stage of the present project; thus, there have 

been no relevant new additions to it.  

We consider a tokamak device that generates a macroscopic, external, magnetic field configuration 𝑩. 

This field is space-dependent and its field-lines are tangent to the unit vector 𝒃 = 𝑩/|𝑩|. In order to 

simplify our numerical scheme, we assume a concentrical, axisymmetric configuration in which: 

𝑩 =
𝐵0𝑅0
𝑅

(𝑒𝜑 + 𝑏𝜃(𝑟)𝑒𝜃)⁡ 

The standard definition of toroidal coordinates 𝑟, 𝜃, 𝜑 has been used, as well as 𝑅0 the large radius of the 

tokamak, 𝐵0 the major axis magnetic field value and 𝑅 = 𝑅0 + 𝑟⁡𝑐𝑜𝑠𝜃. The radial term 𝑏𝜃(𝑟) is related to 

the poloidal magnetic component 𝑩 ⋅ 𝑒𝜃 and can be analytically captured by the poloidally averaged 



 

safety factor 𝑞(𝑟) ≈ 1 + 3⁡(𝑟/𝑎)^2⁡⁡through the relation 𝑏𝜃(𝑟) = 𝑟/𝑞(𝑟)√𝑅0
2 − 𝑟2. In these definitions, 

𝑎 is the minor radius.     

The plasma equilibrium is described, locally, by the density 𝑛(𝑟), temperature 𝑇(𝑟) and pressure 𝑃(𝑟). In 

particular, the temperature gradients 𝐿𝑇𝑖,𝑒 = ∇𝑙𝑛𝑇𝑖,𝑒 have an important role in the determination of the 

diamagnetic velocities 𝑽𝑖
⋆ = −�̂�⊥𝑣𝑡ℎ𝜌𝑖/𝐿𝑇𝑖 ⁡ 𝑽𝒆

⋆ = +�̂�⊥𝑣𝑡ℎ𝜌𝑖/𝐿𝑇𝑒 that induce the turbulence drift, either 

for ITG or TEM. Also, locally, we can compute the Larmor radius 𝜌𝑖 = 𝑚𝑖𝑣𝑡ℎ/|𝑒|𝐵0 , the thermal velocity 

𝑣𝑡ℎ = √𝑇𝑖/𝑚𝑖 . Supplementary, a toroidal plasma rotation 𝒖 can be assumed. 

A charged particle of mass and charge (𝑚, 𝑞) is described by its gyro-center trajectory {𝑿(𝑡), 𝑣∥(𝑡), 𝜇} and 

obeys the following equations of motion: 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑿(𝑡)

𝑑𝑡
= 𝒖 + 𝑣∥

𝑩⋆

𝐵∥
⋆ +

𝑬⋆ × 𝒃

𝐵∥
⋆ + 𝜼

𝑑𝑣∥
𝑑𝑡

=
𝑞

𝑚

𝑬⋆𝑩⋆

𝐵∥
⋆

𝑩⋆ = ∇ × 𝑨⋆⁡⁡⁡⁡⁡⁡⁡⁡; ; ⁡⁡⁡⁡𝑬⋆ = −𝛁ϕ⋆ − ∂t𝑨
⋆⁡⁡⁡

𝑨⋆ = 𝑨 +
𝑚

𝑞
(𝑣∥𝒃 + 𝒖 + 𝒗𝐸)

ϕ⋆ = ϕ+
𝜇

𝑞
𝐵 −

𝑚𝒖𝟐

2𝑞

 

In these expressions, 𝒗𝑬 = 𝒃 × 𝛁ϕ/B isthe standard 𝑬 × 𝑩⁡ drift, 𝜼 is the collisional velocity, 𝐵∥
⋆ = 𝑩⋆ ⋅ 𝒃 

while 𝑣∥ and 𝜇  are the parallel velocity and the magnetic moment in the local frame which moves with 

the plasma flow 𝒖.  

Finally, the turbulence is considered a mix between Ion Temperature Gradient and Trapped Electron 

Mode (ITG, TEM). This means that the turbulent potential 𝜙(𝒙, 𝑡) is a superposition of two random fields. 

The distribution is assumed normal (Gaussian) and homogeneous. Such statistical properties are in line 

with experimental and gyrokinetic results. The wave-number spectrum is drift-like and modelled 

analytically as:  

𝑆𝑠(𝒌) ∼ 𝑒
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The wave frequency modes are approximated as non-interacting and obey a linear dispersion relation: 

𝜔𝑠(𝒌) = 𝒌 ⋅ 𝑽𝒊
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The Fourier representation of such turbulent fields in a single random realization is: 

𝜙𝒌(𝑡) = Φ⁡ (√𝐴𝑖𝑆𝑖(𝒌)𝜉𝑖(𝒌)𝑒
−𝑖⁡𝜔𝑖(𝒌)𝑡 +√𝐴𝑒𝑆𝑒(𝒌)𝜉𝑒(𝒌)𝑒

−𝑖⁡𝜔𝑒(𝒌)𝑡) 

The 𝐴𝑖 , 𝐴𝑒 are fractions of each instability such that 𝐴𝑖 + 𝐴𝑒 = 1, Φ is interpreted as the overall 

turbulence amplitude while 𝑆𝑖(𝒌), 𝑆𝑒(𝒌) are spectra associated with ITG and TEM turbulence. The fields 

𝜉𝑖(𝒌), 𝜉𝑒(𝒌) are independent white noises 〈𝜉𝑠(𝒌)〉 = 0 and 〈𝜉𝑠(𝒌)𝜉𝑠′(𝒒)〉 = 𝛿𝑠,𝑠′𝛿(𝒌 + 𝒒). 



 

The main idea of the statistical approach is as it follows. One generates a statistical ensemble of random 

fields {𝜙(𝒙, 𝑡)} with the prescribed statistical properties (distribution, spectrum). For each such realization 

and each possible kinetic property of a particle (initial parallel velocity 𝑣∥ , magnetic moment 𝜇 and initial 

position 𝑿(𝑡 = 0)) a trajectory is computed with the aid of the equations of motion written above. The 

statistical averages of these trajectories and their spreading across the whole ensemble are directly linked 

with the transport coefficients: velocity 𝑉 and diffusion 𝐷. The latter are the quantities of interest. 

From numerical perspectives, we solve the equations using a 4th order Runge-Kutta method for a 

numerical statistical ensemble of 𝑁𝑝 = 10
5 particles/field realizations. Each field-realization is build with 

the aid of a discrete Fourier decomposition in 𝑁𝑐 = 500 partial waves: 

𝜙(𝒙, 𝑡) = √
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Here, 𝛼𝑗
𝑒 , 𝛼𝑗

𝑖  are independent uniformly distributed phases ∈ (0,2𝜋),⁡ the vectors 𝒌𝒋
𝒆, 𝒌𝒋

𝒊 are random 

vectors distributed accordingly with the PDFs 𝑆𝑒(𝒌𝒋
𝒆), 𝑆𝑖(𝒌𝒋

𝒊). The number of partial waves are chosen 

𝑁𝑐
𝑖 = 𝑁𝑐𝐴𝑖 , 𝑁𝑐

𝑒 = 𝑁𝑐𝐴𝑒 such that the fractions of ITG, TEM are well reproduced 𝑁𝑐
𝑖 +𝑁𝑐

𝑒 = 𝑁𝑐.  

 

 

Numerical simulations and database 

The goal of this work is to find, understand and model mathematically the relationship between turbulent 

transport coefficients and tokamak plasma parameters. Since the problem is highly-nonlinear, this can be 

achieved only through numerical means. We aim first at getting a large set of data that will become a 

database for the injective relation between parameters 𝑃 and transport coefficients 𝑉,𝐷, thus 𝑃 → 𝐷, 𝑉.  

We choose the case of the ASDEX Upgrade tokamak as being medium-sized and representing a “middle-

point” in the parametric space of existing tokamak devices. In the Table 1 shown below are described the 

fundamental parameters of our model with their interpretation. The “reference value” corresponds to 

AUG standard discharges. The interval of variation refers to the parametric space where we intend to 

investigate their impact on the transport, the central query of this work. 

 

Parameter Interpretation Reference value Interval of variation 

𝑇𝑖 Ion temperature 1⁡𝑘𝑒𝑉 [0 − 2]𝑘𝑒𝑉 

𝑇𝑒 Electron temperature 1⁡𝑘𝑒𝑉 [0 − 2]𝑘𝑒𝑉 

𝐵0 Magnetic field value near axis 2.5⁡𝑇 [0 − 4]𝑇 

𝑅0 Large radius 1.65⁡𝑚 [0.8 − 2.5]𝑚 

𝑎 Small radius 0.65⁡𝑚 [0.3 − 0.8]𝑚 



 

𝑛0 Plasma density 1019𝑚−3 [1 − 6]1019𝑚−3 

Ω𝑡 Toroidal plasma rotation 104𝐻𝑧 104[0 − 5]𝐻𝑧 

𝑇 Species temperature 𝑇𝑖 [0 − 2]𝑇𝑖 

r0 Initial position 𝑎/2 [0.1 − 1]𝑎 

𝐿𝑇𝑖  Ion temperature gradient 𝑅0/5 𝑅0/[1 − 10] 

𝜆𝑥 Radial correlation length 6𝜌𝑖 [2 − 10]𝜌𝑖 

𝜆𝑦 Poloidal correlation length 6𝜌𝑖 [2 − 10]𝜌𝑖 

𝜆𝑧 Toroidal correlation length 𝑎 [0.3 − 2]𝑎 

𝑘0 Dominant wave number 0.1/𝜌𝑖 [0 − 0.5]/𝜌𝑖 

Φ Turbulence amplitude 3%⁡ [0 − 7]% 

𝐿𝑇𝑒 Electron temp. Gradient 𝑅0/5 𝑅0/[1 − 10] 

 

Table 1: The main parameters of the model, their reference value coresponing to AUG like discharges and 
the interval of variation of each parameter. 
  



 

Results 

Here, we present the numerical radial diffusion dependency on each parameter, as determined by 

numerical simulations. Additionally, we include a regression approximation for each dependency. All 

these results are shown in the Figs. [1-5] bellow. The red dots are real numerical values of the diffusion. 

The blue lines (and the blue dots) represent the proposed regression model. The latter is motivated by 

our need to balance analytical simplicity and the ability to reproduce the “exact” numerical values. 

Note that many real dependencies (red) are plagued with some level of randomness (oscillations). These 

are of numerical nature and are quite difficult to remove. The only cure is to increase the number of test-

particles Np but the errors decrease only as Np
1/2

 which means that a large numerical effort is required. 

In order to lower the fluctuations by a factor of 3, the computing time must be increased almost ten fold. 

Since the regression approach itself is an approximation, we have considered that a superior level of 

accuracy would have required an unacceptable level of CPU resources and was not necessary at this stage. 

 

 

Fig. 1: The dependency between radial diffusion 𝐷𝑟 and ion/electron temperature gradient 𝐿𝑇𝑖/𝑒 obtained 

with nonlinear numerical simulations (red) and fitted with a regression model (blue). 

 

 

Fig. 2: The dependency between radial diffusion 𝐷𝑟 and major/minor radius of the tokamak 𝑅0/𝑎 obtained 

with nonlinear numerical simulations (red) and fitted with a regression model (blue). 

 



 

 

Fig. 3: The dependency between radial diffusion 𝐷𝑟 and ion/electron temperature 𝑇𝑖/𝑇𝑒 obtained with 

nonlinear numerical simulations (red) and fitted with a regression model (blue). 

 

 

Fig. 4: The dependency between radial diffusion 𝐷𝑟 and magnetic field intensity  𝐵0 and species 

temperature 𝑇 obtained with nonlinear numerical simulations (red) and fitted with a regression model 

(blue). 

 



 

  

Fig. 5: The dependency between radial diffusion 𝐷𝑟 and turbulence spectral properties: amplitude Φ and 

correlation lengths 𝜆𝑥, 𝜆𝑦, 𝜆𝑧 obtained with nonlinear numerical simulations (red) and fitted with a 

regression models (blue). 

 
 
Once the individual dependencies around the baseline scenario have been obtained and appropriate 

regression formulas have been found, it is time to determine to what degree this mathematical modelling 

can reproduce data in scenarios that depart more from the baseline. A technical difficulty appears: the 

information encoded in the regressions shown in Figs. [1-5] is valid only when all parameters are constant 

but one. How can we expand this information to the entire many-dimensional domain? We choose the 

simplest strategy of all: we consider that the multi-varied dependency of diffusion 𝐷𝑟 on parameters 𝑃 =

{𝑇𝑖, 𝑇𝑒 , 𝐵0, 𝑎, 𝜆𝑥, 𝜆𝑦, 𝜆𝑧, Φ, 𝑅0, 𝐿𝑇𝑖 , 𝐿𝑇𝑒} can be factorized on single-varied dependencies. The result is the 

formula described bellow:  

 



 

To test weather this global model bears any meaning in realistic situation, we have performed a set of 

𝑁𝑑 = 200 numerical simulations using randomly generated parameters that fall within the ranges of 

variations described in Table 1. For each such set, the exact diffusion is evaluated and compared with the 

one predicted by the global formula shown above. The results are plotted in Fig [6] as regression vs exact 

values. We observe an appropriate degree of agreement, aside from several outliers. While the latter 

might seem to imply an important failure of our model, we note that they happen at small values of 

diffusion which are, by themselves, irrelevant. Moreover, when diffusion is small, the numerical results of 

the code are plagued with a larger degree of relative error which makes the data uncertain. We conclude 

at this end that the minimal mathematical model developed is relatively precise on large datasets, but 

supplementary improvements should be developed in the future stage of the project. 

 

Fig. 6: Radial diffusion coefficients obtained with the regression model vs exact radial diffusions obtained 

with nonlinear numerical simulations. Note that the outliers are irrelevant since they correspond to small 

values of the diffusion coefficients which are not only uninteresting, but are also plagued with large 

relative errors. 

 

Preparing the grounds for machine learning/Bayesian approaches 

In the next phase of the present project, the database will grow to be truly "extensive", with the 

performance of approximately 105 simulations. This will enable the collection of enough data to support 

the creation of a machine-learning techniques as tools for transport forecasting.  In this regard, we expect 

that Feed-Forward and Bayesian neural network will play an important role. 

For that, we have acquired a basic understanding of the intricate mathematics underlying the concept of 

neural networks. Additionally, self-made feed-forward numerical codes have been created.  Mathematica 

Wolfram is the language used to write such simple examples.  Similar to preconstructed neural networks 

that are already available in Mathematica/Python, they have demonstrated good learning properties after 



 

being trained on synthetic data. A sample of the self-made neural network and its training phase via the 

ADAM algorithm is displayed in Fig. [7]. 

 

Fig. 7:  A snapshot of the self-made code for the implementation of a general feed-forward neural 

networks optimized with the ADAM algorithm. 
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Conclusion 

 

One of the objectives of the present project is to simulate, understand, and mathematically model the 

relationship between turbulent transport and plasma parameters. This was accomplished by means of 

extensive numerical simulations using a numerical Fotran code, that was created to implement a statistical 

transport model by representing turbulence as a statistical ensemble of random fields with predetermined 

statistical properties.  AUG-like discharges were selected as the reference case. Around this central value, 

all the parameters are freely adjusted. We can obtain individual transport dependencies with the 

parameters by performing individual variations. These relations were mathematically modeled through 

an approach akin to regression. We also incorporate the analytical expression for regression into a single, 

all-inclusive formula. We demonstrate that the latter is not limited in its relevance, even though it is more 

precise unidimensionally, in the multi-dimensional parametric space. It can forecast random 

configurations of any tokamak devices within certain error bounds. Future developments (improvements) 

of the regression models are expected. 

The statistical method of test-particles was also used in conjunction with an analytical analysis for the 

effect of hidden coherent components of motion on growth rates of drift-type turbulence. During this 

analysis it was found that: there is a second source of instability, which develops as the amplitude of the 

turbulence increases, the second term in the dispersion relation (15) that is determined by the coherent 

motion in the radial direction. We have identified a new characteristic time in the statistics of trajectories 

and in the evolution of turbulence: the memory time τm. The growth rates and the frequencies are 

intrinsically time-dependent. The characteristics of the turbulent potential are not smooth time functions, 

but they have oscillating evolution on time intervals of the order of τm. This is much longer than the 

correlation time 1/γ and corresponds to very small frequencies, much smaller than ω. Such evolution is in 

agreement with the results of the numerical simulations and of the experimental measurement.  
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