
Rezumat 

T10: Transportul si controlul impuritatilor grele (W) in centrul plasmei si in SOL. 

Principalul obiectiv, validarea importantei noului concept al drifturilor ascunse asupra trasportului 
ionilor de W, a fost indeplinit ca rezultat al unui studiu detaliat al interactiei neliniare a acceleratiei 
paralele cu transportul perpendicular. Efectul principal consta din generarea unei curgeri radiale, ce este 
suficient de puternica pentru a contribui la dinamica ionilor de W in plasmele existente si in ITER. 

T11 Confinarea, transportul și controlul ionilor rapizi în condiții relevante pentru ITER. 

A fost investigat efectul turbulenței de drift asupra transportului ionilor rapizi în plasmele tokamak  de 
tip AUG sau ITER în prezența perturbațiilor rezonanțelor magnetice (RMP). S-a construit un model de 
transport și o metodă de generare a câmpurilor aleatorii gaussiene pentru implementarea metodei 
simularilor numerice directe (DNS). Rezultatele numerice au relevat supresia transportului turbulent 
pentru ionii rapizi și un cuplaj sinergetic care duce la creșterea difuziei de tip RMP.  Ne-omogenitatea 
câmpului magnetic dă naștere la asimetrii ale efectele difuzive și, implicit, la apariția unui drift radial. 

 

Summary 

T10: Transport and control of W and heavy impurities in the core and SOL. 
The main objective, the assessing the importance of the new concept of hidden drifts on W transport, 
was accomplished as result of a detailed study of the nonlinear interaction of the parallel acceleration 
with the perpendicular transport. The main effect consists of the generation of a radial pinch, which is 
rather strong to contribute to the W ion dynamics in the existing plasmas and in ITER conditions. 

T11: Fast ion confinement, transport and control under ITER relevant conditions. 
The effect of drift turbulence in the presence of RMP on fast ion transport in AUG or ITER-like tokamak 
plasmas has been investigated. We have developed a transport model as well as a new method to 
generate Gaussian random fields for the use of direct simulation method (DNS). Numerical results have 
revealed a suppresion of turbulent transport for fast ions and a sinergistic mechanism leading to an 
increase of RMP-type diffusion. Magnetic field inhomogeneities lead to a small radial drift. 

 

Detailed results 

T10: Transport and control of W and heavy impurities in the core and SOL. 

A detailed analysis of the turbulent transport of heavy impurities in the conditions of the AUG plasmas 

was performed in the frame of a test particle model. A particular attention is devoted to the nonlinear 

interaction of the parallel accelerated motion of the W ions with the perpendicular transport. 

We have analysed the effects of the parallel acceleration  𝑎𝑧  on the diffusion coefficients and on the 

radial pinch velocity. The acceleration scales as  𝑎𝑧 ∼ 𝑍/𝐴,  where  𝑍  is the ionization rate and  𝐴  is the 

mass number of the ions. Thus, it is smaller for the W impurities than for plasma ions. The factor  𝑍/𝐴  

varies in the interval  (0.05,  0.33)  for the W impurities, while it has the value  0.5  for the deuterium. 

Surprisingly, we have found that the effect of  𝑎𝑧  can be significant for W impurities, while it is 

negligible for deuterium ions. 



The main effect of the nonlinear interaction of the parallel accelerated motion with the 

perpendicular transport consists of the generation of a radial pinch velocity  𝑉𝑥 . This is a new, rather 

unexpected phenomenon. The parallel acceleration is expected to influence impurity transport through 

the modification of the parallel decorrelation time. We have shown that, beside this direct effect, a 

much stronger coupling of the parallel accelerated motion to the radial transport appears. It consists of 

the perturbation of hidden drifts (HDs). The HDs are a pair of opposite velocities in the radial direction 

that appears in the presence of a poloidal average velocity [1]-[2]. This quasi-coherent motion has zero 

average and does not determine a convective velocity in the case of the ExB drift. The stochastic parallel 

acceleration perturbs the equilibrium of the HDs leading to a radial pinch. 

 

The transport Model 

Most of the analysis is performed in the frame of a test particle stochastic model, which is shown to be 

the minimal model that yields the pinch 𝑉𝑥 . We study impurity transport in the slab approximation, at 

the low field side of the plasma. The dimensionless equations for the impurity ion trajectories are 
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= −𝑃𝑎 ∂𝑧𝜑,                                                             (2) 

 

where the first term in Eqs. (1) is the stochastic drift determined by the electric field of the turbulence 

−𝛻𝜙(𝒙(𝑡), 𝑧(𝑡), 𝑡)  and the second term Vp  is a poloidal average velocity that can be produced by the 

magnetic drifts or plasma rotation. The parallel motion includes the variation of the velocity determined 

by the stochastic acceleration 𝑎𝑧. Dimensionless quantities are used, with the units:  𝜌𝑖 = 𝑣𝑡ℎ𝑖/𝛺𝑖 ,  the 

Larmor radius of the protons (for the perpendicular distances, for the correlation lengths  𝜆𝑥 ,   𝜆𝑦   and 

for  1/𝑘0),   𝑎,  the small radius of the plasma (for the parallel distances and for the correlation length  

𝜆𝑧),   𝜏0 = 𝑎/𝑣𝑡ℎ𝑖   (for time and for  𝜏𝑑 ),  𝐴𝜑 , the amplitude of the potential (for the potential  𝜑 ),  

𝑉∗ = 𝜌𝑖𝑣𝑡ℎ𝑖/𝑎  (for the perpendicular velocities and  𝑉𝑑)  and  𝑣𝑡ℎ𝑊 = 𝑣𝑡ℎ𝑖/√𝐴  (for the parallel velocity 

of the W ions).  𝑣𝑡ℎ𝑖 = √𝑇𝑖 /𝑚𝑝  is the thermal velocity of protons with temperature  𝑇𝑖   and mass  𝑚𝑝  

and  𝛺𝑖 = 𝑒𝐵/𝑚𝑝  is the cyclotron frequency of the protons. The correlation lengths ,  𝜆𝑥 ,   𝜆𝑦 , 𝜆𝑧   and 

time 𝜏𝑑  appear in the Eulerian correlation of the (Gaussian) stochastic potential  𝜑(𝑥, 𝑧, 𝑡)   

𝐸(𝑥, 𝑧, 𝑡) ≡ ⟨𝜑(0,0,0) 𝜑(𝑥, 𝑧, 𝑡)⟩.                                                                 (3) 

It is modelled by  
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which corresponds to the drift type turbulence.  

The main characteristics of the model appear in the dimensionless parameters evidenced in the 

dimensionless equation :  

𝐾∗ = 𝛷
𝑎

𝜌𝑖
,   𝛷 =
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.                                                                             (5) 
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where  𝐾∗  is the dimensionless measure of turbulence amplitude, 𝑉𝑝 is the poloidal velocity  and 𝑃𝑎  is 

the measure of the acceleration 𝑎𝑧.  

The energy of the ions normalized with the temperature Ti is  𝑊 =
𝑣𝑧

2

2
+ 𝑍𝛷𝜙. It is the invariant of the 

motion in three-dimensional static potentials 𝜙(𝑥, 𝑧, 𝑡). This constraint influences the transport for τd → 

∞, and its effects persist in the case of potentials with slow time variation (large τd). We note that the 

energy is dominated by the potential energy for the W ions with large Z, even at small turbulence 

amplitudes (Φ ∼ 10−2). 

 

Theoretical methods 

We use two theoretical methods for determining the pinch velocity and the transport coefficients, the 

direct numerical simulations (DNS) and the decorrelation trajectory method (DTM) [3].  

A three-dimensional DNS code for ion trajectories and for the calculation of the statistical Lagragian 

quantities was developed. It is based on an original method for generation of Gaussian random fields 

that essentially increase the stochasticity compared to the well known fast Fourier representation, by 

including random wave numbers instead of fixed values on a grid. We have shown [*] that the 

representation (FRD) provides fast convergence of the Eulerian statistics of the generated fields, as well 

as of the Lagrangian statistics of trajectories. In particular, it was proven that a convergence level with a 

few percents error can be achieved with a number of waves  𝑁𝑐 ∼ 10𝑑  and a number of realizations 

(trajectories)  𝑀 ∼ 104 ,  where  𝑑 = 4  for time dependent potentials and  𝑑 = 3  for  𝜏𝑑 → ∞.  Also, it 

is worth mentioning that such representations are able to reproduce with high accuracy the 

conservation laws of motion as well as certain Lagrangian statistical invariants. 

The properties of the representation (FRD) enables to use commonly in the present simulations  

𝑁𝑐 ∼ 1 − 5 × 103  waves. The dimension of the statistical ensemble is usually set to  𝑀 ∼ 105  

realizations (trajectories) which gives small statistical fluctuations. The numerical integration scheme 

used is a forth order Runge-Kutta method which preserves well the energy with a minimal numerical 

effort. Typical number of steps is  600  for the integration time  𝑡 = 30.  Depending on the integration 

time and on the type of turbulence (frozen, or not), the usual CPU times on personal computer are  

𝑡𝐶𝑃𝑈 ∼ 2 − 20  hours per run. Detailed analyses of the statistical and numerical precision of the DNS 

code and of the dependence of the errors on  𝑁𝑐  ,  𝑀  are presented in the Paper [*]. 

The DTM [3] is a semi-analytical approach that provides approximate evaluations of the transport 

characteristics. It is able to describe both the random and the quasi-coherent components of the 

trajectories [4]. The latter are determined by the finite correlation lengths of the stochastic potential 

and depend on the structure of the correlated zone that is described by the shape of the EC. The basic 

DTM is developed here by introducing the parallel acceleration. It is described in the Paper [**] 

The DTM is used for identifying and understanding qualitatively the effects of the parallel 

acceleration and the new pinch mechanism, while the quantitative properties of the radial velocity  𝑉𝑥  

and of the diffusion coefficient  𝐷𝑥  are determined using the much more accurate results provided by 

DNS.   

 



Effects of the parallel acceleration 

The effects of the parallel acceleration on the heavy impurity transport are identified  by comparing 

typical results of the transport model with those obtained for deuterium ions and for W ions in two-

dimensional potentials. The variation of the parallel velocity determines by the acceleration modifies the 

parallel decorrelation time (especially at large  𝑍). It becomes a function that depends on all the 

parameters of the parallel motion. It can be approximated by  

𝜏𝑧
∞(𝑊, 𝑍, 𝛷, 𝜆𝑧) ≅ 𝜆𝑧√𝐴/𝑣𝑧

𝑒𝑓𝑓 ,                                                                     (7) 

which is a decreasing function of  𝑊,   𝑍,   𝛷  and an increasing function of  𝜆𝑧  (as  𝜆𝑧
𝛼  with  𝛼 > 1).  

The influence of the decorrelation time on the diffusion is different in the quasilinear ( 𝜏𝑧
∞ < 𝜏𝑓𝑙 )  and 

the trapping ( 𝜏𝑧
∞ > 𝜏𝑓𝑙)  regimes. The asymptotic diffusion coefficient scales as 

𝐷𝑥
∞ ∼ {

𝛷2𝜏𝑧
∞,    𝜏𝑧

∞ < 𝜏𝑓𝑙

𝛷𝛾𝜏𝑧
𝛾−1

,  𝜏𝑧
∞ > 𝜏𝑓𝑙

,                                                                               (8) 

 where  0 < 𝛾 < 1 .   

The effects of the interaction of the parallel motion with the perpendicular transport through the 

parallel decorrelation explain the results obtained for the diffusion coefficients. The influence of the 

parallel acceleration is negligible for the D ions and noticeable for W ions. The strongest difference 

appears due to the dependence of  𝜏𝑧
∞  on the mass number, which leads to values of 𝜏𝑧

∞  that are larger 

by a factor 10 for the W ions compared to the D ions. The diffusion is usually in the trapping regime for 

the W ions to much smaller  𝐷𝑥
∞  for the W ions compared to D ions. 

 

The pinch mechanism 

The physical processes that determine the generation of the radial pinch are examined using the DTM.  

We have shown [1], [2] that a special quasi-coherent effect, that is neither structure nor flow, appears in 

the stochastic transport in the presence of an average poloidal velocity  𝑉𝑝 . It consists of two average 

radial velocities in opposite directions, which exactly compensate. This pair of drifts are named in [1] 

hidden drifts (HDs) because they do not yield an average velocity in these conditions. 

The HDs are essentially determined by the existence of average displacements of the trajectories that 

start from same values of the potential  𝜑0 , and by the special property of these conditional averages  

⟨𝑥(𝑡)⟩𝜑0  of having the sign correlated to the sign of  𝜑0 .  The conditional displacements  ⟨𝑥(𝑡)⟩𝜑0  are 

zero in the case of the motion determined only by the electric drift ( 𝑉𝑝 = 0) , but they have finite values 

in the presence of an average poloidal velocity  𝑉𝑝 . In the absence of the parallel acceleration (two-

dimensional potentials),  ⟨x(𝑡)⟩𝜑0  is an anti-symmetrical function of  𝜑0  and it leads, by integration 

over  𝜑0 ,  to zero average displacement. This special type of quasi-coherent motion is generated by the 

average poloidal velocity  𝑉𝑝 ,  which determines strong modifications of the contour lines of the total 

potential  𝜑𝑡(x) = 𝜑(x) + 𝑥𝑉𝑝.   

The average displacements conditioned by the sign of the initial potential  

⟨𝑥(𝑡)⟩+ = ∫ 𝑑𝜑0⟨𝑥(𝑡)⟩𝜑0
∞

0
,  ⟨𝑥(𝑡)⟩− = ∫ 𝑑𝜑0⟨𝑥(𝑡)⟩𝜑0

0

−∞
                                             (9) 



determine two opposite radial velocities  𝑉+,   𝑉−  that exactly compensate  𝑉+ + 𝑉− = 0  due to the anti-

symmetry of  ⟨𝑥(𝑡)⟩𝜑0  with respect to the initial potential  𝜑0  (see [1], [2] for details). The heavy ions 

with large ionization rates  𝑍  have smaller acceleration, but also a much higher potential energy (larger 

than for D ions by the factor  𝑍).  Then, even for small amplitudes of the turbulence ( 𝛷  of the order  

10−2),  the trajectories cannot reach the maxima of the stochastic potential, because the invariance of 

the energy (W) imposes  𝑊 − 𝑍𝛷𝜑0 = 𝑣𝑧
2/2 > 0.  The result is the cut of  ⟨𝑥(𝑡)⟩𝜑0  at large  𝜑0. A 

strong symmetry breaking of the conditional displacements is produced at large  𝑍,  which determines 

non-symmetrical conditional displacements (9) and an average radial motion  ⟨𝑥(𝑡)⟩.  The latter yields 

an average radial velocity  𝑉𝑥(𝑡).  The maximum allowed potential  𝜑𝑚𝑎𝑥   decreases with the increase of  

𝑍,  which leads to the increase of the average displacement and of the pinch velocity  𝑉𝑥
∞ . This explains 

the significant pinch velocity produced by the parallel acceleration for W ions.  

 

Ion collisions and the gradient of the confining magnetic field are not essential ingredients in this 

mechanism and are not included in the minimal model analyzed here. However, they could interfere 

with the HDs by changing their amplitude and symmetry.  

We have evaluated the effects of collisions using the DTM. The mechanism of the pinch velocity relies 

on the HDs, a quasi-coherent component of the motion. Collisions usually contribute to the 

enhancement of the random characteristics at the expense of the coherent ones. Moreover, in the case 

of heavy ions with large  𝑍,  the collision frequency 𝜈 and diffusion coefficient 𝑑𝑐
⊥ are much larger than 

for plasma ions 

𝑑𝑐
⊥ = √𝐴

𝑎

𝜆𝑚𝑓𝑝
,    𝜈 =

𝑍2

√𝐴

𝑎

𝜆𝑚𝑓𝑝
                                                                     (10) 

  

The effect of collisions on the pinch mechanism is exemplified in Fig. 1, where the average radial 

displacement is presented together with its conditional components in Eq. (9) for several values of the 

perpendicular collisional diffusion coefficient. One can see that  |⟨𝑥(𝑡)⟩|  decreases with the increase of  

𝑑𝑐
⊥,  which determines the decrease of the pinch velocity  𝑉𝑥

∞.  The collision effect depends on the sign 

of the initial potential ( ⟨𝑥(𝑡)⟩+  and  ⟨𝑥(𝑡)⟩−  have different dependences on  𝑑𝑐
⊥). Thus, ion collisions 

have significant attenuation effect on the coherent motion that produce the HDs, but the pinch 

mechanism survives even at large collisional diffusion. This estimation finds an attenuation factor of the 

order  2  for a rather large interval of  𝑑𝑐
⊥.  

 
Fig. 1. Effect of collisions. The average radial displacement ⟨𝑥(𝑡)⟩ (solid lines) with its conditional in Eq. (9)  



(dashed-dotted and dashed lines) as functions of time  for 𝑑𝑐
⊥=0 (black), 0.3 (blue), 4.7 (green) and 11.8 (red). 

 

Another process that could hinder the acceleration induced pinch is produced by the gradient of the 

magnetic field  𝐵,   𝑑𝐵/𝑑𝑥 ≅ 𝐵/𝑅,  where  𝑅  is the major radius of the plasma. It generates a radial 

pinch [5] that could influence the symmetry breaking of the HDs. We have found that the effect appears, 

but it is negligible for large size plasmas with  𝑎/𝜌𝑖? 100.    

 

Scaling laws of the radial pinch and diffusion coefficient 

The properties of the pinch velocity  𝑉𝑥  and its dependence on the main parameters of the model are 

determined using the more accurate results of the DNS. The study is focused on the scaling of  𝑉𝑥  with 

the main parameters of the model. The results are analyzed and physical explanations are derived. 

We take under scrutiny a generic case of W ions in a ITER like plasma such that the mass of the ion is 

𝐴 = 184 and 𝜌/𝑎 = 1/500. The effective impurity charge is  𝑍 = 40, its energy 𝑊 = 1 and the 

turbulence amplitude Φ = 0.03 which implies 𝐾𝑠 = 15 and 𝑃𝑎 = 0.09. The others parameters of the 

model : 𝜆𝑥 = 2, 𝜆𝑦 = 2, 𝜆𝑧 = 0.5, 𝑉𝑝 = 1, 𝜏𝑑 = 5.  These values are considered a basic configuration 

around which the parameters are individually varied during numerical simulations. We do that, in order 

to understand how the diffusion and the radial pinch depend on physical inputs.  

 

The asymptotic radial velocity Vx
∞ is shown in Fig. 2 (left panel) as function of Φ. The pinch is negative 

(inward) for the whole range of Φ and it increases with Φ. The dependence is approximately linear for 

Φ ≤ 0.04, and a tendency of saturation can be observed at larger Φ.  The asymptotic diffusion 

coefficient 𝐷𝑥
∞increases with the increase of Φ according to the law 𝐷𝑥

∞ ∼ Φ𝛾 with 𝛾 = 1.5, as seen in 

Fig. 2 (right panel). The values 1 < 𝛾 < 2 define the super-Bohm regime. Such regime is unusual in the 

presence of trajectory trapping or eddying, which yields the scaling (8) with 0 < 𝛾 < 1. This stronger 

increase of 𝐷𝑥
∞ is the effect of the parallel acceleration through the effective decorrelation time 𝜏𝑧

∞ . 

The latter is a decreasing function of Φ. Thus, the super-Bohm regime is the result of trajectory trapping 

coupled to the parallel accelerated motion. 

 

 
Fig. 2. W transport dependence on turbulence amplitude : the asymptotic pinch velocity (left panel) and the 

diffusion coefficient (right panel). 

 

 



 
Fig. 3: W transport dependence on the ionization rate Z : the asymptotic pinch velocity (left panel) and the diffusion 

coefficient (right panel). 

 

The mechanism of generation of the radial pinch depends essentially on the product 𝑍Φ. Thus, the 

ionization rate has a similar effect with the amplitude Φ  of the turbulence. As seen in Fig. 3 (left panel), 

the pinch velocity has an approximately linear increase followed by the tendency of saturation, a 

behavior that is similar to the dependence on Φ (Fig. 2 (left panel)). The diffusion coefficient shown in 

Fig 3 (right panel) has a more complicated dependence on 𝑍, but the variation of 𝐷𝑥
∞ on the relevant 

range of 𝑍 is small (of the order ±20%  of the average). The influence of 𝑍 on the diffusion is produced 

through the effective parallel decorrelation time 𝜏𝑧
∞ that depends on 𝑍.  

 

 
Fig 4: W transport dependence on the parallel correlation length 𝜆𝑧 : the asymptotic pinch velocity (left panel) and 

the diffusion coefficient (right panel). 

 

The pinch mechanism analyzed here appears only in three-dimensional stochastic potentials. But, as 

discussed, 𝑉𝑥
∞ essentially results from the symmetry breaking of the HDs determined by the energy 

conservation. The potential energy does not dependent on 𝜆𝑧, which means that a finite 𝜆𝑧 is necessary, 

but its direct quantitative influence on the pinch mechanism is small. However, 𝜆𝑧 has a strong influence 

on the transport through the parallel decorrelation time 𝜏𝑧
∞ that increases with 𝜆𝑧 faster than linearly. It 

explains the large decrease rate of both 𝑉𝑥
∞  and 𝐷𝑥

∞  seen in Fig. 4, which shows that 𝑉𝑥
∞ ∼ 𝜆𝑧

−1.3 and 

𝐷𝑥
∞ ∼ 𝜆𝑧

−1.2  . Thus, 𝜆𝑧 determines the decrease of 𝑉𝑥
∞ and 𝐷𝑥

∞ only through the modification of the 𝜏𝑧
∞.  

 

 



 
Fig. 5: W transport dependence on the poloidal velocity 𝑉𝑝 : the asymptotic pinch velocity (left panel) and the 

diffusion coefficient (right panel). 

 

The poloidal average velocity is the source of the hidden drifts. It has a strong influence on both the 

pinch velocity and the diffusion coefficient, as seen in Fig. 5. The equations of motion are invariant at 

the change 𝑉𝑝 → −𝑉𝑝  and 𝑥 → −𝑥, which implies that the conditional displacements and the HDs 

change their sign when 𝑉𝑝 → −𝑉𝑝. Thus, the pinch velocity 𝑉𝑥
∞ is an anti-symmetrical function of 𝑉𝑝, as 

seen in Fig. 5 (left panel). 𝑉𝑥
∞ is linear in 𝑉𝑝 at small 𝑉𝑝, it has a maximum at 𝑉𝑝 ∼ 0.3  and a long tail with 

𝑉𝑥
∞ ∼ 𝑉−1.2 at large 𝑉𝑝. The direction of the pinch produced by the parallel acceleration can be changed 

from inward to outward by inversing the orientation of the poloidal velocity. The diffusion coefficient is 

strongly influenced by 𝑉𝑝, which determines a large decrease of 𝐷𝑥
∞ , as seen in Fig. 5 (right panel). Thus, 

𝑉𝑝 has a special effect on the transport, different compared to the other parameters. The pinch velocity 

𝑉𝑥
∞ is modified because 𝑉𝑝 influences the amplitude of the HDs. The diffusion coefficient 𝐷𝑥

∞ is modified 

because 𝑉𝑝 influences the structure of the contour lines of the total potential. 

 

Evaluation of the relevance of the acceleration induced pinch for JET, AUG and ITER 

The physical domains of the main parameters of the transport model were explored for evaluating the 

scaling laws and for obtaining the range of the normalized pinch velocity and diffusion coefficient. The 

typical values of  |𝑉𝑥
∞|  are in the interval  (0.05,  0.25).        

The relevance of the acceleration induced pinch velocity appears more clearly in physical units. The 

typical normalized values determine different velocities for present plasmas (ASDEX Upgrade, JET) and 

ITER conditions. The main difference (concerning  𝑉𝑥
∞)  is the electron temperature. Due to the time-

scale separation of the atomic and transport processes, the W impurities are in coronal equilibrium. The 

fractional abundance of each ionization stage is a function of the electron temperature that is practically 

not influenced by the transport [6]. This determines different ranges of the ionization rates for the 

present plasmas and ITER. In the first case  𝑍  varies from boundary to the center in the interval  

(20,  48),  while in the second case the interval is  (45,  63).  Typical values of  𝑍  in the core plasma are  

𝑍 = [43,  44,  57],  where the first value in this and the following triads corresponds to ASDEX Upgrade, 

the second to JET and the third to ITER. This determines normalized values of the pinch velocity of the 

order  |𝑉𝑥
∞| ≈ [0.10,  0.11,  0.15].  Using typical parameters of these plasmas, the pinch velocities are of 

the order  |𝑉𝑥
∞| ≈ [160,  110,  194] 𝑚/𝑠𝑒𝑐.  Thus, the pinch velocity is larger in the ITER plasmas 



roughly by  50%  at similar parameters of the turbulence and poloidal velocity. The convection time to 

plasma center is very small  𝛥𝑡𝑐 = 𝑎/𝑉𝑥
∞ ≈ [4,  11,  10] 𝑚𝑠𝑒𝑐.  Convection dominates diffusion in all 

cases, because  𝛥𝑡𝑐 ≪ 𝛥𝑡𝑑𝑖𝑓 ,  where  𝛥𝑡𝑑𝑖𝑓 = 𝑎2/(2𝐷𝑥
∞)  is the diffusive time. The ratio  𝑟 = 𝛥𝑡𝑐/𝛥𝑡𝑑𝑖𝑓   

is  𝑟 ≈ [0.18,  0.10,  0.07].  

These values of the pinch velocity are evaluated in the frame of the minimal model (1)-(2). They only 

show that the effect produced by the parallel acceleration is very large in these ideal conditions. 

Collisions determine the attenuation of  𝑉𝑥
∞  by a factor of the order  2.  Also, interactions with other 

pinch mechanisms and neoclassical aspects can strongly modify these values. Compared to the results 

obtained from complex models and simulations, this pinch velocity is larger by an order of magnitude 

(see, for example, the very recent paper [7], where the central accumulation of the W ions seen in Fig. 3 

appears in hundreds of  𝑚𝑠𝑒𝑐,  corresponding to pinch velocities of the order of  10𝑚/𝑠𝑒𝑐 ). 

We underline that the dependence of  𝑉𝑥
∞  on  𝑉𝑝  (Fig. Figure 5 (left panel)) could provide a very 

efficient control possibility. The change of  𝑉𝑝  from the direction of the electron to the ion diamagnetic 

velocity determines the inversion of the pinch from inward to outward direction. A strong variation of  

𝑉𝑥
∞  with  𝑉𝑝  exists at small  |𝑉𝑝| < 0.5,  which shows a high sensitivity of the pinch velocity to the 

poloidal velocity.   
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T11: Fast ion confinement, transport and control under ITER relevant conditions 

 

In present day tokamak devices, but especially in future D-T plasma experiments like ITER, there will be 

a significant population of supra-thermal fast ions with energies in the MeV range originating from the 

fusion reaction or from external heating mechanisms.  As they are a crucial source of heat, momentum 

and current, it is important to understand and control the transport of such particles. Two particular 

mechanisms of transport are important in fusion plasmas: electrostatic turbulence and magnetic 

perturbations. 

 

In the present work we intend to analyze the physical mechanisms behind this type of transport of fast 

ions using a test-particle transport model. The electrostatic turbulence and the RMPs are considered 



stochastic fields with known Eulerian statistics. Their characteristics serve as input parameters. The 

statistical nature of the model is tackled with a direct numerical simulation (DNS) method. The diffusion 

coefficients are computed as a quantitative measure of transport. Approximate scaling laws for diffusion 

are being explored. 

 

Direct numerical simulations 

 

The purpose of direct numerical simulations (DNS) is to investigate the turbulent transport as it is, 

without resorting to any approximations, closures, or supplementary models [1,2,3]. In our case, the 

Eulerian characteristics of turbulence are fully prescribed via the Gaussian statistics and the correlation 

function.  Therefore, the goal of a DNS is to compute the characteristic trajectories of turbulence. 

 

This is achieved constructing a statistical ensemble of Gaussian random fields (GRFs) with the correct 

correlation function. For each realization, the set of eqns. of the transport model is solved and a 

trajectory is obtained. The transport coefficients, diffusion and average velocity, are computed as simple 

statistical averages over the ensemble: 

 

                                                                       ⟨𝑣(𝑡)⟩ =
𝑑⟨𝑥(𝑡)⟩

𝑑𝑡
        ;           𝐷(𝑡) =

1

2

𝑑

𝑑𝑡
⟨𝑥2(𝑡)⟩.                           (1)                                             

 

Gaussian random field generation  

 

The DNS method, as described above, requires the generation of a large (infinite, in theory) ensemble of 

high dimensional potentials 𝜙(𝑥, 𝑦, 𝑧, 𝑡). This is not an easy numerical task and a DNS can be become 

very rapidly prohibitive in practice. For this reason we have searched actively for ways to improve the 

computational speed of GRF generation. We have focused on the theory of GRFs representations: we 

have developed a general theoretical setup [1] within which several numerical approximations of GRFs 

were constructed. All these methods approximate a GRF 𝜙(𝑥) as a superposition of elements: 

 

                                                                       𝜙(𝑥) = ∑ 𝜁𝑖𝑖 𝐹(𝑥; 𝑎𝑖)                                                                        (2) 

 

If the function 𝐹 is a trigonometric function, the method is of Fourier type (F), if it is the square root of 

correlation is of Blob type (B). If the 𝑎𝑖 are on an uniform grid, the method is fixed (F), if not, it is random 

(R). Finally, depending on the values of the 𝜁𝑖, the method can be discrete (D) or continuous (C). From all 

possible representations we have chosen for the present work the method called FRD [1]: 

  

                                                                   𝜙(𝑥) = 𝐿𝑘
1/2 ∑ √𝑆(𝑘𝑖)𝑖 𝑠𝑖𝑛 (𝑘𝑖𝑥 +

𝜋

4
𝜁𝑖)                                               (3) 

 

where 𝑆(𝑘) is the spectrum of the random field, i.e. the Fourier transform of the correlation function 

𝐸(𝑥). The wavenumbers 𝑘𝑖  are randomly chosen within the compact support of the spectrum. The 

phases 𝜁𝑖 = ±1.  The convergence of the FRD method is proven numerically [1]. In particular, we have 

shown that the convergence of Eulerian properties implies convergence of Lagrangian statistics. Small 



errors (∼ 1%) can be achieved using a number of waves 𝑁𝑐 ∼ 10 𝑑 where 𝑑 is the dimensionality of the 

space (𝑑 = 4  in our case). The dimension of the statistical ensemble is, usually, 𝑁𝑝 ∼ 105 . Also, it is 

worth mentioning that such representations are able to reproduce with high accuracy the conservation 

laws of motion as well as certain Lagrangian statistical invariants. The numerical integration scheme 

used is a 4th order Runge-Kutta method which preserves well the energy with a minimal numerical 

effort. Depending on the integration time and on the type of turbulence (frozen, or not), the usual CPU 

times on personal computer are 𝑡𝐶𝑃𝑈 ∼ 2 − 20 ℎ per run. 

 

 

Transport Model 

 

The motion of fast ions in a tokamak plasma can be described with a test-particle transport model [4] in 

a standard slab geometry setup (𝒙, 𝒛) = ((𝑥, 𝑦), 𝑧), 𝑥, 𝑦, 𝑧  representing the radial, poloidal and toroidal 

directions). Ion dynamics is driven by the turbulent stochastic potential 𝜙(𝒙, 𝑧, 𝑡) and the RMP magnetic 

field 𝒃(𝒙, 𝑧, 𝑡). The poloidal and toroidal components of the magnetic perturbations are smaller than the 

radial one, thus, have little influence on the radial dynamics. Moreover, Oz is the only direction on which 

the characteristic length Λ𝑧 of the RMP is comparable with the correlation length 𝜆𝑧 of the electric 

potential 𝜙(𝒙, 𝑧, 𝑡). Thus, one can approximate the magnetic influence on transport with a stochastic 

RMP field 𝒃(𝒙, 𝑧, 𝑡) ≈ 𝑏(𝑧)�̂�𝑥. The stochastic character of 𝑏(𝑧) is justified by the intrinsic noise of the 

RMPs and the random initial spreading of ions.  

 

The system is immersed in a large toroidal, inhomogeneous, magnetic field 𝐵�̂�𝑧 which, at the turbulence 

scale, can be approximated as 𝐵 = 𝐵0exp (−𝑥/𝑅). The RMP's amplitude is orders of magnitude smaller 

than the toroidal field |𝑏| ≪ 𝐵0. Dealing with fast particles, collisions can be neglected. The gyro-

averaging procedure ⟨∗⟩𝑔 = 𝑇−1 ∫ ∗
𝑡+𝑇

𝑡
𝑑𝜏 of Larmor rotation leads to the following equations of motion 

for the guiding-center (𝑿⊥(𝑡), 𝑍(𝑡)) = ⟨(𝒙⊥(𝑡), 𝑧(𝑡))⟩
𝑔

 of a fast ion: 

 

𝑑𝑋⊥

𝑑𝑡
=

�̂�𝑧 × 𝛻⊥𝜙𝑔

𝐵
+

𝑣𝑧𝑏𝑔

𝐵
�̂�𝑥 + 𝑉𝑝   ;                  

𝑑𝑍

𝑑𝑡
= 𝑣𝑧  

 (4) 

The electrostatic turbulent potential 𝜙(𝑥, 𝑧, 𝑡) is modelled as a homogeneous Gaussian random field 

with known Eulerian correlation (EC) function  𝐸(𝑥, 𝑧, 𝑡) = 〈𝜙(𝑥, 𝑧, 𝑡)𝜙(0,0,0)〉 corresponding to drift 

type turbulence 

 

 , (5) 

 

where 𝐴𝜙  is the amplitude of the potential fluctuations, 𝜆𝑥 , 𝜆𝑦 , 𝜆𝑧  are the correlation lengths along the 

radial, poloidal and parallel directions, and k0 is the dominant wave number. The function T(t) is the time 

correlation of the potential that is a decaying function of time with τd the decorrelation time 



                                                 .                                                                            (6) 

Similarly, for the RMP, the field is described as a Gaussian random field with known correlation function:  

𝐵(𝑧) = 𝐴𝛽
2 exp (−

𝑧2

2Λ𝑧
2

) 

(7) 

The gyroaveraging procedure has a negligible effect on the RMP field due to its large correlation length 

characteristic. Yet, it affects the electrostatic potential. Assuming that the fast ions are Maxwellian 

distributed one can show [5] that the gyro-averaged potential  

𝜙𝑔  is described by an effective correlation function: 

 

𝐸𝑒𝑓𝑓(𝑥⊥, 𝑡; 𝑣𝑧 , 𝜌𝑓) = ∫ 𝑑𝑘 𝑆𝜙(𝑘⊥, 𝑣𝑧𝑡, 𝑡)𝑒−𝑘⊥
2 𝜌𝑓

2

𝐼0(𝑘⊥
2 𝜌𝑓

2)𝑒𝑖𝑘⊥𝑥⊥   

(8) 

where 𝜌𝑓 = 𝑣𝑓/Ω𝑐 is the thermal Larmor radius associated with the thermal velocity of fast ions 𝑣𝑓  . The 

function 𝑆(𝑘⊥, 𝑧, 𝑡) is the turbulence spectrum, the Fourier transform of the correlation function 

𝐸(𝑥⊥, 𝑧, 𝑡). The parallel velocity 𝑣𝑧  remains a free parameter. 

 

The folowing scalling is adopted in practice to scale the equations from the transport models : 

(𝑅, 𝑥, 𝑦, 𝜆𝑥 , 𝜆𝑦 , 𝑘0
−1) → 𝜌𝑖, (𝑧, 𝜆𝑧, 𝛬𝑧) → 𝐿𝑇𝑖

, 𝜙 → 𝐴𝜙, 𝑏 → 𝛽, 𝜏 → 𝜏0, 𝜌𝑓 → 𝜌𝑖  and 𝑣𝑧 → 𝑣𝑇𝑓
. 𝑅 is the 

major radius, 𝛬𝑧 the RMP’s correlation length, 𝑏 the RMP field, 𝑣𝑧  the parallel velocity, 𝑊 the energy of 

the ion and 𝑣𝑇𝑓
 its associated thermal temperature. The latter is scaled with the bulk temperature 𝑇𝑖  

which defines also the thermal velocity 𝑣𝑇𝑖
= √𝑇𝑖/𝑚𝑖 and the Larmor radius 𝜌𝑖 = 𝑣𝑇𝑖

/𝛺𝑐. Ωc is the 

Larmor frequency 𝛺𝑐 = |𝑒| 𝐵0/𝑚 and 𝐿𝑇𝑖
the characteristic length of the ion temperature 𝐿𝑇𝑖

=

|𝛻 𝑙𝑛 𝑣𝑇𝑖
|−1. The resulting set of equations for the transport model is given in eqns. (9). We underline 

that this model is statistical by nature: the parallel velocities are Gaussian distributed with unit variance 

while the fields 𝜙𝑔(𝑥⊥, 𝑧, 𝑡) and 𝑏(𝑧) are stochastic GRFs with prescribed spectra. 

 

  (9) 

 

 



 

 

Physical picture and analytical results 

 

We take under analytical and numerical analysis 4 particular characteristics of the transport model in 

order to investigate their impact on transport coefficients. The conclusions of our analysis are: 

 

- the inhomogeneous B field leaves the diffusion unchanged while inducing a small radial pinch  

𝑑⟨𝑥(𝑡)⟩

𝑑𝑡
=

𝐷𝑥(𝑡)

𝑅
 

(10) 

These pinch values are small so they do not dominate the transport. Yet, they reflect a natural tendency 

of an effective ion drift towards the walls due to magnetic field variations. 

 

- the RMP field b(z) contributes to the radial transport as a velocity field 𝑉𝑏(𝑡; 𝑣𝑧) = 𝑃𝑏𝑣𝑧𝑏(𝑃𝑧𝑣𝑧𝑡). The 

results is a naural RMP diffusion which can be analytically estimated :  

 

                  (11) 

 

- the effect of finite Larmor radius on the turbulent transport has been considered before in some 

simplified cases [5]. The main outcome, confirmed by gyrokinetic simulations, is that the diffusion 

decays with the energy of the particles. The effect is small for ”slow” ions Tf ∼ Ti and increases with their 

energy leading to a generic dependency D ∼ W −1/2 at large energies. A good fit for the effect of finite 

Larmor radius on diffusion is interpolated by the following function 

 

                                                                                                                       
(12) 

 

- the coupling between turbulence and RMP is non-linear and leads to a synergistic mechanisms of 

diffusion which can be quantified through a term 𝐷𝜙𝑏which can be roughly estimated as : 

                                                                                      𝐷𝜙𝑏 ∼
𝛬𝑧𝑃𝑏

2

𝑃𝑧

𝐾𝑠
2𝑉𝑒𝑓𝑓

2

𝜆{𝑒𝑓𝑓}
2 𝑓(𝜌𝑓)                                                    

(13) 

 

The effects of the synergistic mechanisms can be seen ”at work” in Fig. 1 where was plotted, from a 

realistic simulation of the transport model (4), the total diffusion D(t) (red), the pure E×B diffusion Dφ(t) 

(in blue, decaying asymptotically to 0) the pure RMP induced diffusion Db(t) (in black, dashed line) and 

the difference, the non-linear coupling term Dφb(t) (green). The case with τc → ∞ was chosen to ensure 

that the 𝐷𝜙𝑏
0 → 0. One can observe how Dφb is non-zero and almost everywhere positive, which supports 



the idea of synergistic coupling. The total diffusion serves as a measure of the confinement degradation. 

The quantity Dφb quantifies the effect of RMP on turbulent transport. 

 

 
FIG. 1: Running diffusion profiles for each component D (red), Db (black, dashed), Dφ 

(blue) and the coupling term Dφb (green), obtained in a DNS simulation 

 

Numerical results 

 

A series of DNSs are performed using the transport model (13) in full basic scenario: λx = 4, λy = 2, τc = 10, 

R/a = 3, LTi = R/5, Vp = 1, W = 10, Ks = 9, β/B0 = 10−3 which implies Pb ≈ 0.47, Pz ≈ 1.58. These values are 

relevant for ITER. A few physically relevant quantities for the fast ions or for the stochastic driving fields 

are varied around the basic scenario: the turbulence amplitude Φ = eAφ/T, the poloidal velocity Vp, the 

RMP amplitude β, the correlation time τc and the thermal energy of fast ions W. 

 

- Turbulence : The effect of turbulence amplitude Φ = qAφ/Ti on diffusion coefficients is shown in Fig. 6a 

against the RMP contribution Db
∞ (in dashed, blue, line) which is constant. The approximate behavior D∞ 

∼ Φ3/2 represents an over-diffusive transport, unusual for E×B turbulence which is known [6] to exhibit 

under-diffusive anomalous transport. The presence of RMPs, which in some sense is equivalent with 

collisions, changes this behavior. The transition from under to over diffusive transport in E × B 

turbulence in the presence of collisions has been proven before [7]. Fig.6b shows the dependence of the 

coupling term Dφb on turbulence amplitude Φ. Two regimes can be delimited: the small and large 

amplitude turbulence. Since usual turbulence strengths for present day tokamaks, as well for ITER, are ∼ 

1% one can conclude that the relevant dependency is Dϕb ∼ Ks
2. 

 

-  The effect of RMP amplitude β/B0 on diffusion coefficients is shown in Fig. 7. The ions are in a regime 

with  𝜏𝑒𝑓𝑓 ≫ 𝜆𝑦/𝑉𝑝thus, the contribution of pure 𝐸 × 𝐵, 𝐷𝜙, is very small. To a good extent one can say 

that 𝐷 ≈ 𝐷𝑏 + 𝐷𝜙𝑏 ∝ 𝐷𝑏
∞ = 𝑃𝑏

2Λ𝑧
2/𝑃𝑧. This analytic dependence (blue, dashed line) is a good fit (Fig. 7) 

for the numerical results (red circles). A small deviation ≈ 0.05 in the exponent of 𝑃𝑏  is revealed. This 

might be an indicator of a more complicated dependence of Dφb on β, but the effect is too small to be 

taken into account. At this end, one can conclude that Dφb ∝ Pb
2. 

 



 

 

 
FIG. 2: On Fig. : the left side (a)), asymptotic values of the radial diffusion coefficients versus turbulence 

amplitude Φ = Aφe/Ti. On the right side (b)), the dependence of the coupling term Dφb on Φ. The 

simulations are performed in the basic scenario. 

 

 

 
FIG. 3: Asymptotic values of the radial diffusion coefficients versus RMP amplitude β/B0. 

 

-The effect of poloidal rotations Vp on diffusion coefficients is shown in Fig. 8. The diffusion profile is 

fitted with a long-range algebraic dependence which decays roughly as 𝑉𝑝
−2. The results are in good 

agreement with previous studies of turbulent transport in different regimes, namely: 𝑉𝑝  reduces the 

radial transport.  

 

- The effect of fast ion thermal energy on transport coefficients is shown in Fig. []. Note that 𝑊 is 

directly related to other parameters of the model: the Larmor radius 𝜌𝑓 ∝ 𝑊1/2, the RMP velocity 

amplitude 𝑃𝑏 ∝ 𝑊1/2 and the effective correlation time 𝜏𝑒𝑓𝑓
−2 = 𝜏 𝑐

−2 + 𝐶𝑊1/2 . Consequently, all 

components of diffusion, 𝐷𝜙, 𝐷𝑏  and 𝐷𝜙𝑏  will be affected by 𝑊 changes. We can estimate some 

dependencies using the analysis from Section (IIIA): 𝐷𝑏
∞ = 𝑃𝑏

2Λ𝑧𝑃𝑧
−1 ∝ √𝑊, 𝐷𝜙 ∝ 𝑓(𝜌) ∝ √𝑊−𝛾. Also, 



at large energies, since 𝜏𝑒𝑓𝑓 ∼ 𝑊−
1

2
 and 𝐷𝜙 ∼ 𝜏−𝛾2, we expect 𝐷𝜙 ∝ 𝑊

𝛾2−𝛾

2 . Finally, at large values for 

W energies and τc Kubo numbers, we expect: 

 

𝐷 ≈ (
𝛽𝐿𝑇

𝐵0𝜌𝑖
)

2

𝑊
1
2 + 𝐴𝑊0.37 + 𝐶𝑊0.87 

 

 
FIG. 4: Asymptotic values of the radial diffusion coefficients versus poloidal velocity Vp. 

The simulations are performed in the basic scenario. 

 

DNSs were performed in the basic scenario using a correlation time τc = 5 and varying the energy W. In 

Fig. 10a we represent the running diffusion time profiles for several energies. A strong decay of the 

microscopic transport (at small times) is observed, decay which will affect the asymptotic values. Most 

likely, this happens because, at small energies, the Larmor radius induced decay of turbulence comes in 

play faster than the RMP effects which are ∝ W1/2. In fact, in Fig. 10c, we can see the results of Dφ
∞ as a 

function of energy W (red markers) in the absence of RMP, β = 0. The decay, which is very similar with 

the one obtained in the Section (IIIA3) suggests that the effects of τeff are small. This is supported by the 

large values of the parallel correlation length of the electrostatic field λz. In Fig. 10b the full results 

regarding the diffusion profile  were represented, alongside with the profile of Dφ + Db
∞. 

Assembling the results from Figs. 10b,10c it can be concluded that, at high energies, the transport is 

dominated by RMP effects and the turbulence does not matter. Finally, in Fig. 10d is plotted the 

remainder  which exhibits a more complicated dependence on energy, similar with the dependency 

on turbulence amplitude 6b. Regardless of its shape, the term is at least one order of magnitude smaller 

than the total diffusion, thus can be neglected across the entire energy spectrum. 



 
FIG. 5: a) running diffusion time profiles for several energies. b) full asymptotic diffusion dependence on 

energy. c) Larmor radius effect at work in full non-linear regime. d) energy dependency of the coupling 

term Dφb. 
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Conclusion 

T10: Transport and control of W and heavy impurities in the core and SOL. 

 

The main finding of this work is a radial pinch that is generated by the stochastic parallel acceleration in 

turbulent plasmas. It is significant for high  𝑍  impurities and negligible for plasma ions. We have shown 

that the pinch is produced in three-dimensional turbulence by the interaction of the parallel motion 

with the HDs, a special type of quasi-coherent radial motion that appears due to a poloidal average 

velocity. We have also shown that the influence of the parallel motion on the transport through the 

parallel decorrelation time  𝜏𝑧
∞  is much stronger for heavy impurities than for plasma ions. The 
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fluctuations of the parallel velocity are very large for W ions, and they determine a smaller parallel 

decorrelation time that depends on the parameters of the parallel motion  𝜏𝑧
∞(𝑊, 𝑍, 𝛷, 𝜆𝑧).  This 

complex decorrelation process influences both the pinch velocity and the diffusion coefficient. It leads 

to an unusual diffusion regime of super-Bohm type and modifies the scaling laws of  𝑉𝑥
∞  and  𝐷𝑥

∞.   

T11: Fast ion confinement, transport and control under ITER relevant conditions. 

 

In this project the effects of resonant magnetic perturbations on the turbulent transport of fast ions in 

tokamak plasmas were investigated. A minimal transport model of test-particle type has been used to 

capture the 𝐸 × 𝐵 drift, the parallel motion, the poloidal velocity, inhomogeneous 𝐵, finite Larmor 

radius effects and the RMP fields. The statistical nature of the equations is tackled with a direct 

numerical simulation method.  

The main semi-analytical findings, which are supported by numerical simulations, are: 

-  inhomogeneous 𝐵 induces a radial positive pinch ∼ 𝐷(𝑡)/𝑅  which has a fairly small value ∼ 10−3𝑣𝑇𝑖  

- the Larmor radius effects lead to an algebraic decay of transport 𝐷 ∼ 𝜌𝑓
−0.75 

- the pure RMP induces an asymptotic diffusion 𝑃𝑏
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- the non-linear coupling between RMP and 𝐸 × 𝐵 leads to 𝐷 ∼
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